等差數(shù)列的各項均為正數(shù),,前項和為,為等比數(shù)列, ,且 . (1)求與;
(2)求和:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知集合,
具有性質(zhì):對任意的,至少有一個屬于.
(1)分別判斷集合與是否具有性質(zhì);
(2)求證:①;
②;
(3)當(dāng)或時集合中的數(shù)列是否一定成等差數(shù)列?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足().
(1)求的值;
(2)求(用含的式子表示);
(3)記,數(shù)列的前項和為,求(用含的式子表示).).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列是等差數(shù)列,且且成等比數(shù)列。
(1).求數(shù)列的通項公式
(2).設(shè),求前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是首項和公比均為的等比數(shù)列,設(shè).
(1)求證數(shù)列是等差數(shù)列;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從中這個數(shù)中取(,)個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個數(shù)記為.
(1)當(dāng)時,寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前n項和為,,且成等比數(shù)列,當(dāng)時,.
(1)求證:當(dāng)時,成等差數(shù)列;
(2)求的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}、{bn}、{cn}滿足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求證:{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com