【題目】已知函數(shù)f(x)=xex
(1)求函數(shù)f(x)的極值.
(2)若f(x)﹣lnx﹣mx≥1恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)極小值.無極大值;(2)
【解析】
(1)利用導(dǎo)數(shù)可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,即可得到函數(shù)的極值;
(2)由題意得恒成立,即恒成立,設(shè),求得函數(shù)的導(dǎo)數(shù),得到函數(shù)在有唯一零點(diǎn),進(jìn)而得到函數(shù)最小值,得到的取值范圍.
(1)由題意,函數(shù)的定義域?yàn)?/span>,則
因?yàn)?/span>,
所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
函數(shù)在處取得極小值.無極大值
(2)由題意知恒成立
即()恒成立
設(shè)=,則
設(shè),易知在單調(diào)遞增,
又=<0, >0,所以在有唯一零點(diǎn),
即=0,且,單調(diào)遞減;
,單調(diào)遞增,
所以=,
由=0得=,即
,由(1)的單調(diào)性知,,,
所以==1,
即實(shí)數(shù)的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通7座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動(dòng)機(jī)制,保費(fèi)與上一、二、三個(gè)年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
投保類型 | 浮動(dòng)因素 | 浮動(dòng)比率 |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列;
(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;
②假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故盈利8000元,若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)指出函數(shù)的基本性質(zhì):定義域,奇偶性,單調(diào)性,值域(結(jié)論不需證明),并作出函數(shù)的圖象;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為.
(1)若關(guān)于的方程的兩個(gè)實(shí)數(shù)根為,求證:;
(2)當(dāng)時(shí),證明函數(shù)在函數(shù)的最小零點(diǎn)處取得極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①回歸直線過樣本點(diǎn)中心(,)
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,平均值不變
③將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變
④在回歸方程=4x+4中,變量x每增加一個(gè)單位時(shí),y平均增加4個(gè)單位
其中錯(cuò)誤命題的序號(hào)是( 。
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P,Q從點(diǎn)出發(fā)在單位圓上運(yùn)動(dòng),點(diǎn)P按逆時(shí)針方向每秒鐘轉(zhuǎn)弧度,點(diǎn)Q按順時(shí)針方向每秒鐘轉(zhuǎn)弧度,則P,Q兩點(diǎn)在第2019次相遇時(shí),點(diǎn)P的坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某育種基地對(duì)某個(gè)品種的種子進(jìn)行試種觀察,經(jīng)過一個(gè)生長期培養(yǎng)后,隨機(jī)抽取株作為樣本進(jìn)行研究。株高在及以下為不良,株高在到之間為正常,株高在及以上為優(yōu)等。下面是這個(gè)樣本株高指標(biāo)的莖葉圖和頻率分布直方圖,但是由于數(shù)據(jù)遞送過程出現(xiàn)差錯(cuò),造成圖表損毀。請(qǐng)根據(jù)可見部分,解答下面的問題:
(1)求的值并在答題卡的附圖中補(bǔ)全頻率分布直方圖;
(2)通過頻率分布直方圖估計(jì)這株株高的中位數(shù)(結(jié)果保留整數(shù));
(3)從育種基地內(nèi)這種品種的種株中隨機(jī)抽取2株,記表示抽到優(yōu)等的株數(shù),由樣本的頻率作為總體的概率,求隨機(jī)變量的分布列(用最簡分?jǐn)?shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是一質(zhì)點(diǎn)做簡諧運(yùn)動(dòng)的圖象,則下列結(jié)論正確的是( )
A.該質(zhì)點(diǎn)的運(yùn)動(dòng)周期為0.7s
B.該質(zhì)點(diǎn)的振幅為5
C.該質(zhì)點(diǎn)在0.1s和0.5s時(shí)運(yùn)動(dòng)速度為零
D.該質(zhì)點(diǎn)的運(yùn)動(dòng)周期為0.8s
E.該質(zhì)點(diǎn)在0.3s和0.7s時(shí)運(yùn)動(dòng)速度為零
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題的真假.
(1)若直線上有無數(shù)個(gè)點(diǎn)不在平面內(nèi),則;
(2)若直線與平面平行,則與平面內(nèi)的任意一條直線都平行;
(3)若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點(diǎn);
(4)如果兩條平行直線中的一條與一個(gè)平面平行,則另一條直線也與這個(gè)平面平行.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com