已知圓M:(x+
5
)2+y2=36
,定點N(
5
,0),點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
GQ
NP
=0

(1)求點G的軌跡C的方程;
(2)過點(2,0)作斜率為k的直線l,與曲線C交于A,B兩點,O是坐標原點,是否存在這樣的直線l,使得
OA
OB
≤-1?若存在,求出直線l的斜率k的取值范圍;若不存在,請說明理由.
分析:(1)點Q在NP上,點G在MP上,由已知有|GN|+|GM|=|MP|=6,由橢圓的定義知G點的軌跡是以M、N為焦點的橢圓,由定義寫出其標準方程即可得到點G的軌跡C的方程.
(2)令A(x1,y1),B(x2,y2),則有x1x2+y1y2<-1,由直線l與曲線C聯(lián)立求利用根與系數(shù)的關(guān)系求出x1x2,y1y2的參數(shù)表達式,代入求直線的斜率k的范圍.
解答:解:由已知,Q為PN的中點且GQ⊥PN⇒GQ為PN的中垂線⇒|PG|=|GN|
∴|GN|+|GM|=|MP|=6,故G點的軌跡是以M、N為焦點的橢圓,其長半軸長a=3,半焦距c=
5
,
∴短半軸長b=2,∴點G的軌跡方程是
x2
9
+
y2
4
=1
(II)設l的方程為y=k(x-2),A(x1,y1),B(x2,y2
y=k(x-2)
x2
9
+
y2
4
=1
⇒(9k2+4)x2-36k2x+36(k2-1)=0
∴x1+x2=
36k2
9k2+4

x1x2=
36(k2-1)
9k2+4

y1y2=[k(x1-2)][k(x2-2)]=k2[x1x2-2(x1+x2)+4]=
20k2
9k2+4

OA
OB
≤-1,即x1x2+y1y2<-1
把①、②代入上式x1x2+y1y2=0得-
4
130
65
<k<
4
130
65
點評:本題的考點是軌跡方程,考查了定義法求橢圓的軌跡方程與直線與橢圓的相交問題,直線與橢圓的關(guān)系問題是圓錐曲線中一類常考的綜合題,其規(guī)律是聯(lián)立方程⇒消元得關(guān)于x,或y的一元二次方程,再利用根系關(guān)系得到兩個直線的交點的坐標滿足的方程,學習時應注意總結(jié)這一共性.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓M:(x+
5
)2+y2=36
,定點N(
5
,0)
,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
GQ
NP
=0

(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標原點,設
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)已知圓M的圓心M在x軸上,半徑為1,直線l:y=
4
3
x-
1
2
,被圓M所截的弦長為
3
,且圓心M在直線l的下方.
(I)求圓M的方程;
(II)設A(0,t),B(0,t+6)(-5≤t≤-2),若圓M是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+(y-2)2=1,設點B,C是直線l:x-2y=0上的兩點,它們的橫坐標分別是t,t+4(t∈R),P點的縱坐標為a且點P在線段BC上,過P點作圓M的切線PA,切點為A
(1)若t=0,MP=
5
,求直線PA的方程;
(2)經(jīng)過A,P,M三點的圓的圓心是D,
①將DO2表示成a的函數(shù)f(a),并寫出定義域.
②求線段DO長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:廣西一模 題型:解答題

已知圓M:(x+
5
)2+y2=36
,定點N(
5
,0)
,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
,
GQ
NP
=0

(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標原點,設
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案