【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.
【答案】(1) 故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2) .
【解析】試題分析:
(Ⅰ)根據(jù)題意得到的解析式和定義域,求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號(hào)判斷單調(diào)性.(Ⅱ)分析題意可得對(duì)任意, 恒成立,構(gòu)造函數(shù),則有對(duì)任意, 恒成立,然后通過(guò)求函數(shù)的最值可得所求.
試題解析:
(I)由題意得, , ∴ .
當(dāng)時(shí), ,函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),令,解得;令,解得.
故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(II)由題意知.
,
當(dāng)時(shí),函數(shù)單調(diào)遞增.
不妨設(shè) ,又函數(shù)單調(diào)遞減,
所以原問(wèn)題等價(jià)于:當(dāng)時(shí),對(duì)任意,不等式 恒成立,
即對(duì)任意, 恒成立.
記,
由題意得在上單調(diào)遞減.
所以對(duì)任意, 恒成立.
令, ,
則在上恒成立.
故,
而在上單調(diào)遞增,
所以函數(shù)在上的最大值為.
由,解得.
故實(shí)數(shù)的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左,右焦點(diǎn)分別為,若雙曲線上存在點(diǎn),使,則該雙曲線的離心率范圍為( )
A. (1,1) B. (1,1) C. (1,1] D. (1,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某工廠的一個(gè)車(chē)間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個(gè)小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)產(chǎn)品的頻數(shù)分布,求出產(chǎn)品尺寸中位數(shù)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x≥0時(shí),f(x)≥0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓: ,其左右焦點(diǎn)為、,過(guò)點(diǎn)的直線交橢圓于, 兩點(diǎn),線段的中點(diǎn)為, 的中垂線與軸和軸分別交于、兩點(diǎn),且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為, (為原點(diǎn))的面積為,試問(wèn):是否存在直線,使得?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求證:函數(shù)有兩個(gè)不相等的零點(diǎn), ,且.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】試題分析:(1)討論函數(shù)單調(diào)區(qū)間即解導(dǎo)數(shù)大于零求得增區(qū)間,導(dǎo)數(shù)小于零求得減區(qū)間(2)函數(shù)有兩個(gè)不同的零點(diǎn),先分析函數(shù)單調(diào)性得零點(diǎn)所在的區(qū)間, 在上單調(diào)遞增,在上單調(diào)遞減.∵, , ,∴函數(shù)有兩個(gè)不同的零點(diǎn),且一個(gè)在內(nèi),另一個(gè)在內(nèi).
不妨設(shè), ,要證,即證, 在上是增函數(shù),故,且,即證. 由,得 ,
令 , ,得在上單調(diào)遞減,∴,且∴, ,∴,即∴,故得證
解析:(1)當(dāng)時(shí), ,得,
令,得或.
當(dāng)時(shí), , ,所以,故在上單調(diào)遞減;
當(dāng)時(shí), , ,所以,故在上單調(diào)遞增;
當(dāng)時(shí), , ,所以,故在上單調(diào)遞減;
所以在, 上單調(diào)遞減,在上單調(diào)遞增.
(2)證明:由題意得,其中,
由得,由得,
所以在上單調(diào)遞增,在上單調(diào)遞減.
∵, , ,
∴函數(shù)有兩個(gè)不同的零點(diǎn),且一個(gè)在內(nèi),另一個(gè)在內(nèi).
不妨設(shè), ,
要證,即證,
因?yàn)?/span>,且在上是增函數(shù),
所以,且,即證.
由,得 ,
令 , ,
則 .
∵,∴, ,
∴時(shí), ,即在上單調(diào)遞減,
∴,且∴, ,
∴,即∴,故得證.
【題型】解答題
【結(jié)束】
22
【題目】已知曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)直線的極坐標(biāo)方程為.
(1)求曲線和直線的普通方程;
(2)設(shè)為曲線上任意一點(diǎn),求點(diǎn)到直線的距離的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,,為橢圓的左、右焦點(diǎn),為橢圓上的任意一點(diǎn),的面積的最大值為1,、為橢圓上任意兩個(gè)關(guān)于軸對(duì)稱(chēng)的點(diǎn),直線與軸的交點(diǎn)為,直線交橢圓于另一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且△PF1F2的周長(zhǎng)是8+2.
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-2)2+y2=,過(guò)橢圓的上頂點(diǎn)M作圓T的兩條切線交橢圓于E,F兩點(diǎn),求直線EF的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)購(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事用戶車(chē)盈利10000元,且各種投保類(lèi)型車(chē)的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:
①若該銷(xiāo)售商店內(nèi)有六輛(車(chē)齡已滿三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選兩輛車(chē),求這兩輛車(chē)恰好有一輛為事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com