【題目】某倉庫為了保持庫內的濕度和溫度,四周墻上均裝有如圖所示的自動通風設施.該設施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設施邊框上下滑動且始終保持和AB平行的伸縮橫桿.

(1)設MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

【答案】
(1)解:①如圖1所示,當MN在矩形區(qū)域滑動,即0<x≤1時,△EMN的面積S= =x;

②如圖2所示,當MN在三角形區(qū)域滑動,即1<x< 時,連接EG,交CD于點F,交MN于點H,

∵E為AB中點,

∴F為CD中點,GF⊥CD,且FG=

又∵MN∥CD,∴△MNG∽△DCG.

,即

故△EMN的面積S= = ;

綜合可得:


(2)解:①當MN在矩形區(qū)域滑動時,S=x,所以有0<S≤1;

②當MN在三角形區(qū)域滑動時,S=

因而,當 (米)時,S得到最大值,最大值S= (平方米).

,

∴S有最大值,最大值為 平方米


【解析】(1)分類求出MN在矩形區(qū)域、三角形區(qū)域滑動時,△EMN的面積,可得分段函數(shù);(2)分類求出△EMN的面積的最值,比較其大小,即可得到最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,ADBC,AD=AB=DC=BC=1,EPC的中點,面PACABCD

(1)證明:ED∥面PAB

(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】, .

(1)若,求的單調區(qū)間;

(2)討論在區(qū)間上的極值點個數(shù);

(3)是否存在,使得在區(qū)間上與軸相切?若存在,求出所有的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC= ,AB=1,BD=PA=2,M 為PD的中點.

(1)求異面直線BD與PC所成角的余弦值;
(2)求二面角A﹣MC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從0,12,3,4這五個數(shù)中任選三個不同的數(shù)組成一個三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.

1)求X是奇數(shù)的概率;

2)求X的概率分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:

總計

需要幫助

40

m

70

不需要幫助

n

270

s

總計

200

t

500


(1)求m,n,s,t的值;
(2)估計該地區(qū)老年人中,需要志愿者提供幫助的比例;
(3)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者幫助與性別有關.
參考公式:
隨機變量K2= ,n=a+b+c+d
在2×2列聯(lián)表:

y1

y2

總計

x1

a

b

a+b

x2

c

d

c+d

總計

a+c

b+d

a+b+c+d

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)集具有性質對任意的,使得成立.

(1)分別判斷數(shù)集是否具有性質,并說明理由;

(2)求證: ;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|﹣4<x<1},B={x|( x≥2}.
(1)求A∩B,A∪B;
(2)設函數(shù)f(x)= 的定義域為C,求(RA)∩C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品在近30天內每件的銷售價格P(元)與時間t(天)的函數(shù)是:P=
該商品的日銷售量Q(件)與時間t(天)的函數(shù)關系是:Q=﹣t+40(0<t≤30,t∈N*),求這種商品的日銷售金額的最大值.

查看答案和解析>>

同步練習冊答案