如圖,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)軸上投影,上一點(diǎn),且.當(dāng)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線(xiàn). 過(guò)點(diǎn)且傾斜角為的直線(xiàn)交曲線(xiàn)兩點(diǎn).
(1)求曲線(xiàn)的方程;
(2)若點(diǎn)F是曲線(xiàn)的右焦點(diǎn)且,求的取值范圍.

(1)
(2)

解析試題分析:解:(1)設(shè)點(diǎn)M的坐標(biāo)是的坐標(biāo)是,因?yàn)辄c(diǎn)軸上投影,M為上一點(diǎn),且,所以,且,∵在圓上,∴,整理得. 即的方程是.
(2)如下圖,直線(xiàn)交曲線(xiàn)兩點(diǎn),且.

由題意得直線(xiàn)的方程為.
,消去.
解得.
.
設(shè),則
.
.
.
又由橢圓方程可知,

,
,
.
,,
,故,
,故.
考點(diǎn):直線(xiàn)與橢圓的位置關(guān)系
點(diǎn)評(píng):主要是考查了橢圓方程以及直線(xiàn)與橢圓位置關(guān)系的聯(lián)立方程設(shè)而不求的解題思想的運(yùn)用,屬于難度題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線(xiàn):的距離為.設(shè)為直線(xiàn)上的點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的兩條切線(xiàn),其中為切點(diǎn).
(Ⅰ) 求拋物線(xiàn)的方程;
(Ⅱ) 當(dāng)點(diǎn)為直線(xiàn)上的定點(diǎn)時(shí),求直線(xiàn)的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線(xiàn)上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)直線(xiàn)是曲線(xiàn)的一條切線(xiàn),
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時(shí),存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于A,B兩點(diǎn),
(1)寫(xiě)出拋物線(xiàn)的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓和圓,過(guò)橢圓上一點(diǎn)P引圓O的兩條切線(xiàn),切點(diǎn)分別為A,B.

(1)(。┤魣AO過(guò)橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線(xiàn)AB與x軸、y軸分別交于點(diǎn)M,N,問(wèn)當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)交橢圓于,兩點(diǎn).當(dāng)直線(xiàn)經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)時(shí),其傾斜角恰為

(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)線(xiàn)段的中點(diǎn)為,的中垂線(xiàn)與軸和軸分別交于兩點(diǎn),
記△的面積為,△為原點(diǎn))的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓與拋物線(xiàn)的焦點(diǎn)均在軸上,的中心及的頂點(diǎn)均為原點(diǎn),從每條曲線(xiàn)上各取兩點(diǎn),將其坐標(biāo)記錄于下表:











(Ⅰ)求曲線(xiàn)、的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),與橢圓交于不同的兩點(diǎn),當(dāng)時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),設(shè)點(diǎn)是橢圓上任一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左頂點(diǎn),過(guò)右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)點(diǎn)的直線(xiàn)與橢圓交于點(diǎn),與軸交于點(diǎn),過(guò)原點(diǎn)與平行的直線(xiàn)與橢圓交于點(diǎn),求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案