已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
(1).(2)直線EF的斜率為定值,其值為。
【解析】
試題分析:(1)由題意,c=1,可設橢圓方程為。
因為A在橢圓上,所以,解得=3,=(舍去)。
所以橢圓方程為 . 6分
(2)設直線AE方程:得,代入得
設E(,),F(xiàn)(,).因為點A(1,)在橢圓上,所以
,
。 9分
又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以代,可得
,
。
所以直線EF的斜率。
即直線EF的斜率為定值,其值為。 13分
考點:本題主要考查橢圓的標準方程及其幾何性質,直線與橢圓的位置關系。
點評:中檔題,本題求橢圓的標準方程,主要運用的橢圓的幾何性質,注意明確焦點軸和a,b,c的關系。研究直線與圓錐曲線的位置關系,往往應用韋達定理,通過“整體代換”,簡化解題過程,實現(xiàn)解題目的。
科目:高中數(shù)學 來源: 題型:
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆安徽省高二下第三次(期末)質檢文科數(shù)學卷(解析版) 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆河北省高二下學期第一次考試文科數(shù)學試卷 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山東省濟寧市高二3月月考文科數(shù)學試卷 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com