某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個不等式都是正確的:
①(12+42)(92+52)≥(1×9+4×5)2
②[(-6)2)+82]×(22+122)≥[(-6)×2+8×12]2
③[(6.5)2+(8.2)2]×[(2.5)2+(12.5)2]≥[(6.5)×(2.5)+(8.2)×(12.5)]2
④(202+102)(1022+72)≥(20×102+10×7)2
請你觀察這四個不等式:
(Ⅰ)猜想出一個一般性的結(jié)論(用字母表示);
(Ⅱ)證明你的結(jié)論.
分析:尋找使不等式成立的充分條件,直到使不等式成立的充分條件已經(jīng)顯然具備為止.
解答:解:(Ⅰ)觀察所給的4個等式,猜想出一個一般性的結(jié)論(用字母表示):(a2+b2)(c2+d2)≥(ac+bd)2,( a,b,c,d∈R )
(Ⅱ)證明:要證 (a2+b2)(c2+d2)≥(ac+bd)2,
只要證 a2•c2+a2d2+b2c2+b2d2≥a2c2+b2d2+2abcd,
只要證 a2d2-2abcd+b2c2≥0,
只要證 (ad-bc)2≥0.
而 (ad-bc)2≥0顯然成立,故要證的不等式成立.
點評:本題主要考查用分析法證明不等式,關(guān)鍵是尋找使不等式成立的充分條件,直到使不等式成立的充分條件已經(jīng)顯然具備為止,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù)
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下三個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
請將該同學(xué)的發(fā)現(xiàn)推廣為一般規(guī)律的等式
sin2θ+cos2(300-θ)-sinθcos(30°-θ)=
3
4
sin2θ+cos2(300-θ)-sinθcos(30°-θ)=
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin2(-18°)+cos248°-sin(-18°)cos48°
(I)試從上述三個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一個三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省高三上學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).

;

;

;

.

(1)從上述五個式子中選擇一個,求出常數(shù);

(2)根據(jù)(1)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一個三角恒等式,并證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊答案