5.某大學為了在2016年全國大學生成語聽寫大賽取得優(yōu)秀成績,抽調(diào)男女各20名學生組成集訓隊進行成語聽寫集訓,集訓結束時,為了檢驗集訓效果,對所有集訓隊員進行成語聽寫考核,試題為聽寫100個常用成語(每個1分,滿分100分),考核成績?nèi)鐖D莖葉圖所示:
(I)若大于或等于80分為優(yōu)秀隊員,80分以下為非優(yōu)秀隊員,根據(jù)莖葉圖填寫下面2×2列聯(lián)表,并判斷能否有95%的把握認為隊員的優(yōu)秀與性別有關?
非優(yōu)秀優(yōu)秀總數(shù)
20
20
總數(shù)40
(Ⅱ)若從考核成績95分以上(包括95分)的隊員中任選兩人代表這所大學參加全國大學生成語聽寫大賽,求至少有一名男隊員參加的概率.
下面的臨界值表供參考:
P(K2≥k0) 0.150.100.050.0250.0100.0050.001
 k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (I)根據(jù)所給數(shù)據(jù),可得2×2列聯(lián)表;求出K2,與臨界值比較,即可得到結論;
(Ⅱ)考評成績95分以上(包括95分)的男學員有2人,女學員有4人,任選兩人,有${C}_{6}^{2}$=15種結果,全是女學員,有${C}_{4}^{2}$=6種結果,即可求得至少含1 名男學員的概率.

解答 解:(I)列聯(lián)表如下:

非優(yōu)秀優(yōu)秀總數(shù)
13720
61420
總數(shù)192140
(2分)
${k^2}=\frac{{40{{({15×12-8×5})}^2}}}{23×17×20×20}=5.0256>5.024$
根據(jù)列聯(lián)表中的數(shù)據(jù)計算得${k^2}=\frac{{40{{({13×14-6×7})}^2}}}{19×21×20×20}=4.912$>3.841. (5分)
故我們有95%的把握認為學生生物成績的優(yōu)秀與性別有關. (6分)
(Ⅱ)考評成績95分以上(包括95分)的男學員有2人,女學員有4人,任選兩人,有${C}_{6}^{2}$=15種結果,全是女學員,有${C}_{4}^{2}$=6種結果,至少有一名男學員參加的概率為$\frac{6}{15}$=$\frac{3}{5}$.(12分)

點評 本題考查線性回歸方程的求法和應用,考查概率的計算,本題解題的關鍵是利用最小二乘法求出線性回歸方程的系數(shù),古典概型計算公式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.如果執(zhí)行如圖所示的程序框圖,則輸出的結果為( 。
A.5B.7C.8D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若圓C:x2+(y+1)2=4,點$A(-\sqrt{5},-1)$和點$B(3\sqrt{5},a)$,從點A觀察點B,要使視線不被圓C擋住,則實數(shù)a的取值范圍是a>8$\sqrt{5}$-1或a<-8$\sqrt{5}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個棱長為2的正方體被一個平面截去一部分后,剩余幾何體的三視圖如圖所示,則此幾何體的體積為( 。
A.$\frac{22}{3}$B.$\frac{20}{3}$C.6D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知圓C:x2+y2+2x-3=0,直線l:x+ay+2-a=0(a∈R),則( 。
A.l與C相離B.l與C相切
C.l與C相交D.以上三個選項均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在數(shù)列{an}中,a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$(n>1),則a2016的值為( 。
A.-$\frac{1}{4}$B.5C.$\frac{4}{5}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.觀察下列等式:
a2-b2=(a-b)(a+b)
a3-b3=(a-b)(a2+ab+b2
a4-b4=(a-b)(a3+a2b+ab2+b3),…,
照此規(guī)律,an-bn=(a-b)(an-1+an-2b+…+abn-2+bn-1)(n≥2,n∈N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y≤6\\ 3x+y≤12\end{array}\right.$,且x,y∈Z,則z=2x+y的最大值是( 。
A.7B.8C.$\frac{42}{5}$D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=9-x2( 。
A.有最大值-9B.有最小值9C.有最大值9D.有最小值-9

查看答案和解析>>

同步練習冊答案