經(jīng)市場(chǎng)調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬元,每生產(chǎn)萬件,需另投入流動(dòng)成本為萬元,在年產(chǎn)量不足8萬件時(shí),(萬元),在年產(chǎn)量不小于8萬件時(shí),(萬元). 通過市場(chǎng)分析,每件產(chǎn)品售價(jià)為5元時(shí),生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入固定成本流動(dòng)成本)
(2)年產(chǎn)量為多少萬件時(shí),在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

(1)
(2)

解析試題分析:解:(Ⅰ)6分
⑴當(dāng)時(shí)
10分
⑵當(dāng)
當(dāng)且僅當(dāng)14分
16分
考點(diǎn):函數(shù)的模型的運(yùn)用
點(diǎn)評(píng):主要是考查了運(yùn)用代數(shù)的關(guān)系式來研究實(shí)際生活中的利潤函數(shù)的最值問題,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

周長(zhǎng)為20cm的矩形,繞一條邊旋轉(zhuǎn)成一個(gè)圓柱,則圓柱體積的最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),及函數(shù)。
關(guān)于的不等式的解集為,其中為正常數(shù)。
(1)求的值;
(2)R如何取值時(shí),函數(shù)存在極值點(diǎn),并求出極值點(diǎn);
(3)若,且,求證: 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某海邊旅游景點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).
(Ⅰ)求函數(shù)的解析式及其定義域;
(Ⅱ)試問當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)某市現(xiàn)有從事第二產(chǎn)業(yè)人員100萬人,平均每人每年創(chuàng)造產(chǎn)值a萬元(a為正常數(shù)),現(xiàn)在決定從中分流x萬人去加強(qiáng)第三產(chǎn)業(yè)。分流后,繼續(xù)從事第二產(chǎn)業(yè)的人員平均每人每年創(chuàng)造產(chǎn)值可增加2x%(0<x<100)。而分流出的從事第三產(chǎn)業(yè)的人員,平均每人每年可創(chuàng)造產(chǎn)值1.2a萬元。
(1)若要保證第二產(chǎn)業(yè)的產(chǎn)值不減少,求x的取值范圍;
(2)在(1)的條件下,問應(yīng)分流出多少人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙.已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響.
據(jù)調(diào)查統(tǒng)計(jì),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如下表:

所用的時(shí)間(天數(shù))
10
11
12
13
通過公路1的頻數(shù)
20
40
20
20
通過公路2的頻數(shù)
10
40
40
10
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā).
(Ⅰ)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過公路1、公路2的“一次性費(fèi)用”分別為萬元、萬元(其它費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,銷售商將少支付給生產(chǎn)商2萬元.如果汽車A、B長(zhǎng)期按(Ⅰ)所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大.(注:毛利潤=(銷售商支付給生產(chǎn)商的費(fèi)用)一(一次性費(fèi)用)) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù),),且數(shù)列是首項(xiàng)為,公差為的等差數(shù)列.
(1) 若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和;                      
(2)設(shè),如果中的每一項(xiàng)恒小于它后面的項(xiàng),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某醫(yī)藥研究所開發(fā)一種新藥,在實(shí)驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量(微克)與時(shí)間(小時(shí))之間滿足,
其對(duì)應(yīng)曲線(如圖所示)過點(diǎn).

(1)試求藥量峰值(的最大值)與達(dá)峰時(shí)間(取最大值時(shí)對(duì)應(yīng)的值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長(zhǎng)的有效時(shí)間?(精確到0.01小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/6/nl2rg2.png" style="vertical-align:middle;" />,對(duì)任意的實(shí)數(shù)都有;當(dāng)時(shí),,且.(1)判斷并證明上的單調(diào)性;
(2)若數(shù)列滿足:,且,證明:對(duì)任意的,

查看答案和解析>>

同步練習(xí)冊(cè)答案