已知,,函數(shù);
(I)求的最小正周期;
(II)求在區(qū)間上的最大值和最小值。
(I)的最小正周期為;
(II)時(shí),函數(shù)取得最大值2;時(shí),函數(shù)取得最小值;
解析試題分析:(法一)(I),
函數(shù)的最小正周期為; 4分
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/70/3/xugrn3.png" style="vertical-align:middle;" />, 5分
所以,當(dāng)即時(shí),函數(shù)取得最大值2;
當(dāng)即時(shí),函數(shù)取得最小值; 9分
(法二)(I),
函數(shù)的最小正周期為; 4分
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f2/9/fshp31.png" style="vertical-align:middle;" />, 5分
所以,當(dāng)即時(shí),函數(shù)取得最大值2;
當(dāng)即時(shí),函數(shù)取得最小值; 9分
考點(diǎn):本題主要考查平面向量的數(shù)量積,三角函數(shù)中兩角和的正、余弦公式、二倍角公式;三角函數(shù)的周期、單調(diào)、最值等性質(zhì);考查三角函數(shù)與平面向量的綜合運(yùn)用能力和化歸與轉(zhuǎn)化思想。
點(diǎn)評(píng):典型題,為研究三角函數(shù)的圖象和性質(zhì),往往需要將函數(shù)“化一”,這是?碱}型。本題首先通過平面向量的坐標(biāo)運(yùn)算,計(jì)算向量的數(shù)量積得到函數(shù)F(x)的表達(dá)式,并運(yùn)用“三角公式”進(jìn)行化簡(jiǎn),為進(jìn)一步解題奠定了基礎(chǔ)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為偶函數(shù),且其圖象上相鄰兩對(duì)稱軸之間的距離為.
(1)求函數(shù)的表達(dá)式;(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù),
(1)當(dāng)時(shí),求的最大值和最小值
(2)若在上是單調(diào)函數(shù),且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知向量:,函數(shù),若相鄰兩對(duì)稱軸間的距離為
(Ⅰ)求的值,并求的最大值及相應(yīng)x的集合;
(Ⅱ)在△ABC中,分別是A,B,C所對(duì)的邊,△ABC的面積,求邊的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
1)求函數(shù)的最小正周期; 2)求函數(shù)在區(qū)間上的對(duì)稱軸方程與零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)已知角終邊上一點(diǎn)的坐標(biāo)為,
(1)求角的集合.
(2)化簡(jiǎn)下列式子并求其值:;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com