【題目】以下三個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點,K為非零常數(shù),若|PA|-|PB|=K,則動點P的軌跡是雙曲線.
②方程的兩根可分別作為橢圓和雙曲線的離心率.
③雙曲線與橢圓有相同的焦點.
④已知拋物線,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切.
其中真命題為_________(寫出所有真命題的序號).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知6只小白鼠有1只被病毒感染,需要通過對其化驗病毒DNA來確定是否感染.下面是兩種化驗方案:方案甲:逐個化驗,直到能確定感染為止.方案乙:將6只分為兩組,每組三個,并將它們混合在一起化驗,若存在病毒DNA,則表明感染在這三只當中,然后逐個化驗,直到確定感染為止;若結(jié)果不含病毒DNA,則在另外一組中逐個進行化驗.
(1)求依據(jù)方案乙所需化驗恰好為2次的概率.
(2)首次化驗化驗費為10元,第二次化驗化驗費為8元,第三次及其以后每次化驗費都是6元,列出方案甲所需化驗費用的分布列,并估計用方案甲平均需要化驗費多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 的圖象向左平移 個單位,再向下平移4個單位,得到函數(shù)g(x)的圖象,則函數(shù)f(x)的圖象與函數(shù)g(x)的圖象( )
A.關(guān)于點(﹣2,0)對稱
B.關(guān)于點(0,﹣2)對稱
C.關(guān)于直線x=﹣2對稱
D.關(guān)于直線x=0對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且,則 的值( )
A. 恒為正數(shù) B. 恒等于零
C. 恒為負數(shù) D. 可能大于零,也可能小于零
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)10名健康兒童頭發(fā)和血液中的硒含量(單位:μg/ml)如下表所示:
血硒x | 74 | 66 | 88 | 69 | 91 | 73 | 66 | 96 | 58 | 73 |
發(fā)硒y | 13 | 10 | 13 | 11 | 16 | 9 | 7 | 14 | 5 | 10 |
(1)畫出散點圖;
(2)求回歸方程;
(3)若某名健康兒童的血液中的硒含量為94 μg/ml,預(yù)測他的發(fā)硒含量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2|+|x﹣a|,x∈R.
(Ⅰ)求證:當a=﹣1時,不等式lnf(x)>1成立;
(Ⅱ)關(guān)于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: (其中為圓心)上的每一點橫坐標不變,縱坐標變?yōu)樵瓉淼囊话,得到曲線.
(1)求曲線的方程;
(2)若點為曲線上一點,過點作曲線的切線交圓于不同的兩點(其中在的右側(cè)),已知點.求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2,有一個銳角為60°的菱形ABCD,沿著較短的對角線BD對折,使得,O為BD的中點.
(Ⅰ)求證:
(Ⅱ)求三棱錐的體積;
(Ⅲ)求二面角A-BC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面內(nèi)到點和直線的距離相等的點的軌跡為曲線,則曲線的方程為_______;若直線與曲線相交于不同兩點, ,與圓相切于點,且為線段的中點.在的變化過程中,滿足條件的直線有條,則的所有可能值為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com