【題目】已知AB是平面內(nèi)一條長度為4的線段,P是平面內(nèi)一動點,P可以與A,B重合.當(dāng)PA,B不重合時,直線PAPB的斜率之積為,

1)建立適當(dāng)?shù)淖鴺?biāo)系,求動點P的軌跡方程;

2)一個矩形的四條邊與(1)中的軌跡M均相切,求該矩形面積的范圍.

【答案】1)以AB中點為坐標(biāo)原點,以ABx軸建立坐標(biāo)系,2

【解析】

1))以AB中點為坐標(biāo)原點,以ABx軸建立坐標(biāo)系,設(shè),把已知用坐標(biāo)表示可得軌跡方程;

(2)矩形一邊斜率不存在時直接求出面積,斜率存在時,設(shè)一邊所在的直線為,則對邊為,另一邊所在的直線為,則對邊為,由直線與圓相切得的關(guān)系式,由平行間距離公式求得矩形的兩邊長,計算面積為的函數(shù),由函數(shù)單調(diào)性得取值范圍.

1)以AB中點為坐標(biāo)原點,以ABx軸建立坐標(biāo)系,

,,設(shè),當(dāng)PA,B不重合時,

,,

P可以與AB重合,所以P的軌跡方程為;

2)矩形的各邊與橢圓相切,記矩形面積為S,

當(dāng)矩形的一條邊與坐標(biāo)軸平行時易知,

當(dāng)矩形各邊均不與坐標(biāo)軸平行時,根據(jù)對稱性,

設(shè)其中一邊所在的直線為,則對邊為,

另一邊所在的直線為,則對邊為

,

,

則矩形的一邊長

同理可得:,矩形的另一邊長,,

,

綜上:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AB,C是拋物線Wy2=4x上的三個點,Dx軸上一點.

1)當(dāng)點BW的頂點,且四邊形ABCD為正方形時,求此正方形的面積;

2)當(dāng)點B不是W的頂點時,判斷四邊形ABCD是否可能為正方形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點.若雙曲線的離心率為,的面積為為坐標(biāo)原點,則拋物線的焦點坐標(biāo)為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Γ:+=1(ab>0)的長軸長為4,離心率為

(1)求橢圓Γ的標(biāo)準(zhǔn)方程;

(2)過P(1,0)作動直線AB交橢圓Γ于A,B兩點,Q(4,3)為平面上一定點連接QA,QB,設(shè)直線QA,QB的斜率分別為k1,k2,問k1+k2是否為定值,如果是,則求出該定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以P為頂點的圓錐中,母線長為,底面圓的直徑AB長為2O為圓心.C是圓O所在平面上一點,且AC與圓O相切.連接BC交圓于點D,連接PD,PCEPC的中點,連接OEED.

1)求證:平面平面PAC;

2)若二面角的大小為,求面PAC與面DOE所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分一個社會調(diào)查機(jī)構(gòu)就某社區(qū)居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖如圖.

1為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10 000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,求月收入在段應(yīng)抽出的人數(shù);

2為了估計該社區(qū)3個居民中恰有2個月收入在的概率,采用隨機(jī)模擬的方法:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),我們用0,1,2,3,4表示收入在的居民,剩余的數(shù)字表示月收入不在的居民;再以每三個隨機(jī)數(shù)為一組,代表統(tǒng)計的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù)如下:

907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989

據(jù)此估計,計算該社區(qū)3個居民中恰好有2個月收入在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在凸四邊形中,,則四邊形的面積最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, , 的中點,以為折痕將向上折起, 變?yōu)?/span>,且平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,網(wǎng)上購物已經(jīng)成為人們消費的一種習(xí)慣.假設(shè)某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價格 (單位:元/件)之間滿足如下的關(guān)系式:為常數(shù).已知銷售價格為元/件時,每月可售出千件.

(1)求實數(shù)的值;

(2)假設(shè)該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數(shù)),試確定銷售價格的值,使該店每月銷售裝飾品所獲得的利潤最大.(結(jié)果保留一位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案