12.若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對(duì)稱中心為M(x0,h(x0)),記函數(shù)h(x)的導(dǎo)函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3-3x2+2,則f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4032}{2017}$)+f($\frac{4033}{2017}$)=0.

分析 求出f(x)的對(duì)稱點(diǎn),利用f(x)的對(duì)稱性得出答案.

解答 解:f′(x)=3x2-6x,f″(x)=6x-6,
令f″(x)=0得x=1,
∴f(x)的對(duì)稱中心為(1,0),
∵$\frac{1}{2017}+\frac{4033}{2017}$=$\frac{2}{2017}+\frac{4032}{2017}$=…=$\frac{2016}{2017}+\frac{2018}{2017}$=2,
∴f($\frac{1}{2017}$)+f($\frac{4033}{2017}$)=f($\frac{2}{2017}$)+f($\frac{4032}{2017}$)=…=f($\frac{2016}{2017}$)+f($\frac{2018}{2017}$)=0,
又f($\frac{2017}{2017}$)=f(1)=0
∴f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4032}{2017}$)+f($\frac{4033}{2017}$)=0.
故答案為:0.

點(diǎn)評(píng) 本題考查了函數(shù)的對(duì)稱性判斷與應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若z=4+3i,則$\frac{\overline z}{|z|}$=$\frac{4}{5}$-$\frac{3}{5}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,則$2\overrightarrow a-3\overrightarrow b$的坐標(biāo)是( 。
A.(6,-5)B.(6,7)C.(6,1)D.(6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線C:y2=2px(p>0)的交點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線與拋物線交于M,N兩點(diǎn),若MR⊥l,垂足為R,且∠NRM=∠NMR,則直線MN的斜率為( 。
A.±8B.±4C.±2$\sqrt{2}$D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某教師有相同的語文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈(zèng)送給4位學(xué)生,每位學(xué)生1本,則不同的贈(zèng)送方法共有( 。
A.20種B.15種C.10種D.4種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合A={x|y=$\sqrt{lg(1-x)}$},B={x|x≥-1},則A∩B等于( 。
A.[-1,0]B.[-1,1)C.(-1,+∞)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的各面中,最長棱的長度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.6D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,數(shù)列{log3bn}{n∈N*}為等差數(shù)列,且b1=3,b3=27.
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(II)令cn=(-1)n•$\frac{n}{2}$+3n,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的漸近線與拋物線y=x2+$\frac{1}{4}$相切,則C的離心率為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案