【題目】已知四棱錐P﹣ABCD,底面ABCD是∠A=60°、邊長為a的菱形,又PD⊥底ABCD,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求點A到平面PMB的距離.

【答案】
(1)證明:取PB中點Q,連接MQ、NQ,

因為M、N分別是棱AD、PC中點,

所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.

DN∥平面PMB


(2)解: PD⊥MB

又因為底面ABCD是∠A=60°、邊長為a的菱形,且M為AD中點,

所以MB⊥AD.

又AD∩PD=D,

所以MB⊥平面PAD. 平面PMB⊥平面PAD


(3)解:因為M是AD中點,所以點A與D到平面PMB等距離.

過點D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB.

故DH是點D到平面PMB的距離.

∴點A到平面PMB的距離為


【解析】(1)取PB中點Q,連接MQ、NQ,再加上QN∥BC∥MD,且QN=MD,于是DN∥MQ,再利用直線與平面平行的判定定理進(jìn)行證明,即可解決問題;(2)易證PD⊥MB,又因為底面ABCD是∠A=60°、邊長為a的菱形,且M為AD中點,然后利用平面與平面垂直的判定定理進(jìn)行證明;(3)因為M是AD中點,所以點A與D到平面PMB等距離,過點D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB,DH是點D到平面PMB的距離,從而求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: 的離心率是 ,其一條準(zhǔn)線方程為x=
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)雙曲線C的左右焦點分別為A,B,點D為該雙曲線右支上一點,直線AD與其左支交于點E,若 ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)關(guān)于的方程個不同的實數(shù)解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果一個幾何體的主視圖與左視圖都是全等的長方形,邊長分別是4cm與2cm如圖所示,俯視圖是一個邊長為4cm的正方形.
(1)求該幾何體的全面積.
(2)求該幾何體的外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從花市購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

(1)若花店一天購進(jìn)17支玫瑰花,求當(dāng)天的利潤(單位:元),關(guān)于當(dāng)天需求量(單位:枝, 的解析式;

(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

①假設(shè)花店在這100天內(nèi)每天購進(jìn)16枝玫瑰花或每天購進(jìn)17枝玫瑰花,分別計算這100天花店的日利潤(單位:元)的平均數(shù),并以此作為決策依據(jù),花店在這100天內(nèi)每天購進(jìn)16枝還是17枝玫瑰花?

②若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為概率,求當(dāng)天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,并根據(jù)

(1)寫出函數(shù)f(x)(x∈R)的增區(qū)間;
(2)寫出函數(shù)f(x)(x∈R)的解析式;
(3)若函數(shù)g(x)=f(x)﹣2ax+2(x∈[1,2]),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,若函數(shù)存在零點,求實數(shù)的取值范圍;

(Ⅱ)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣3x﹣10≤0},B={x|m﹣4≤x≤3m+2}.
(1)若A∪B=B,求實數(shù)m的取值范圍;
(2)若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣1),f(12)的值.

查看答案和解析>>

同步練習(xí)冊答案