【題目】已知函數(shù) .

(Ⅰ)當(dāng)時,求函數(shù)處的切線方程;

(Ⅱ)令,求函數(shù)的極值;

(Ⅲ)若,正實數(shù), 滿足,證明: .

【答案】(10;(2)詳見解析;(3)證明詳見解析.

【解析】試題分析:(1)由導(dǎo)數(shù)幾何意義得切線斜率,所以先求導(dǎo)數(shù)得,即,又,再根據(jù)點斜式得切線方程2)先求導(dǎo)數(shù),再分類討論導(dǎo)函數(shù)在定義區(qū)間上符號變化規(guī)律,確定極值取法:當(dāng)時, ,函數(shù)無極值點.當(dāng)時,一個零點,導(dǎo)函數(shù)在其左右符號變化,先增后減,所以有極大值,無極小值

3)先化簡,轉(zhuǎn)化為關(guān)于函數(shù)關(guān)系式: ,研究函數(shù),其中,得,因此,解不等式得

試題解析:(1)當(dāng)時, ,則,所以切點為

,則切線斜率,

故切線方程為,即................3

2,

,......................4

當(dāng)時,

上是遞增函數(shù),函數(shù)無極值點..................5

當(dāng)時, ,令,

當(dāng)時, ;當(dāng)時, ,

因此上是增函數(shù),在上是減函數(shù),............................7

時, 有極大值

綜上,當(dāng)時,函數(shù)無極值;

當(dāng)時,函數(shù)有極大值,無極小值............................... 8

3)證明:當(dāng)時, ,

,即,

從而,

,則由得:

可知, 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

,,

.....................12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

27

38

30

37

35

31

33

29

38

34

28

36

(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;

(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是等邊三角形,邊長為4, 邊的中點為,橢圓 為左、右兩焦點,且經(jīng)過、兩點。

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)過點軸不垂直的直線交橢圓于, 兩點,求證:直線的交點在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 是邊長為的正三角形, 平面,且在平面的同側(cè),它們在內(nèi)的正射影分別是,且, 的距離為.

(1)求點到平面的距離;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一個水平放置的正三棱柱, 是棱的中點,正三棱柱的主視圖如圖(2).

(1)圖(1)中垂直于平面的平面有哪幾個(直接寫出符合要求的平面即可,不必說明或證明)

(2)求正三棱柱的體積;

(3)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線過點,其傾斜角為,以原點為極點,以正半軸為極軸建立極坐標(biāo),并使得它與直角坐標(biāo)系有相同的長度單位,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程和圓的普通方程;

(2)設(shè)圓與直線交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機調(diào)查了100名學(xué)生進行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計

比較細(xì)心

45

比較粗心

合計

60

100

(2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?

參考數(shù)據(jù):獨立檢驗隨機變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;

方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.

方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.

(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎.按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖(見下圖)

(Ⅰ)求所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)填寫下面的列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎與學(xué)生的文理科有關(guān)”?

附表及公式:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案