【題目】已知函數(shù),其中

1)當(dāng)時(shí),寫(xiě)出函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;

3)若對(duì)任意的實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】1單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.23

【解析】

1)將代入解析式,即可根據(jù)絕對(duì)值函數(shù)的圖像與性質(zhì)判斷出單調(diào)區(qū)間.

2)根據(jù)偶函數(shù)性質(zhì),可知必有,即可解得的值,再代入檢驗(yàn)即可.

3)將解析式代入化簡(jiǎn)不等式,討論兩種情況.再當(dāng)時(shí),對(duì)分類(lèi)討論,結(jié)合不等式恒成立的條件即可求得的取值范圍.

1)函數(shù)

代入可得,

由絕對(duì)值函數(shù)圖像可知,當(dāng)時(shí)單調(diào)遞增,當(dāng)時(shí)單調(diào)遞減,

所以單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

2)函數(shù)為偶函數(shù),

則滿(mǎn)足,

,

所以,

解得,

代入解析式可得,符合題意,

3)對(duì)任意的實(shí)數(shù),不等式恒成立,

則對(duì)任意的實(shí)數(shù),不等式恒成立,

化簡(jiǎn)可得,

,當(dāng)時(shí),,所以恒成立,即此時(shí),

,當(dāng)時(shí),不等式可化為,

當(dāng)時(shí),,

即有,

,解不等式可得,

當(dāng)時(shí),即有,化簡(jiǎn)可得

,解得 (舍),

可得

當(dāng)時(shí),可得不能恒成立;

當(dāng)時(shí),,要使得,只需,

,解得,不合題意舍去,

當(dāng)時(shí),要使得,只需,

,解得,不合題意舍去,

綜上可得的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】邗江中學(xué)高二年級(jí)某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).

(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)X~N(μ1),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線(xiàn)如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)處的切線(xiàn)與直線(xiàn)平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),交直線(xiàn)于點(diǎn).記過(guò)、三點(diǎn)的圓為圓

1)求圓的方程;

2)求過(guò)點(diǎn)與圓相交所得弦長(zhǎng)為的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCDA1B1C1D1中,ADAA11AB2,點(diǎn)E是線(xiàn)段AB中點(diǎn).

1)證明:D1ECE;

2)求二面角D1ECD的大小的余弦值;

3)求A點(diǎn)到平面CD1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠(chǎng)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程

(2)已知該廠(chǎng)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線(xiàn)性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)若函數(shù)fx)在處有極值,求函數(shù)fx)的最大值;

2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:

組號(hào)

分組

頻數(shù)

頻率

第1組

5

0.05

第2組

a

0.35

第3組

30

b

第4組

20

0.20

第5組

10

0.10

合計(jì)

n

1.00

(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;

(2)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測(cè)試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第4組中至少有一名學(xué)生被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案