【題目】已知函數(shù)處有極大值,則的值為( )

A. B. C. D.

【答案】B

【解析】

先求函數(shù)的導函數(shù),由題意可得f(1)=10,且f′(1)=0,解a,b的方程,再根據(jù)極大值的概念,檢驗a,b的值進而求得 的值.

函數(shù)f(x)=x3+ax2+bx-a2-7a的導函數(shù)為f′(x)=3x2+2ax+b,

由在x=1處取得極大值10,可得

解得a=-2,b=1或a=-6,b=9.

當a=-2,b=1時,f′(x)=3x2-4x+1=(x-1)(3x-1),

<x<1時,f′(x)<0,f(x)單調(diào)遞減;

當x>1時,f′(x)>0,f(x)單調(diào)遞增;

可知f(x)在x=1處取得極小值10;

當a=-6,b=9時,f′(x)=3x2-12x+9=(x-1)(3x-9),

當x<1時,f′(x)>0,f(x)單調(diào)遞增;

當3>x>1時,f′(x)>0,f(x)單調(diào)遞減;

可知f(x)在x=1處取得極大值10.

綜上可得,a=-6,b=9滿足題意.

.故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下四個命題:

①若ab≤0,則a≤0b≤0;②若a>b,則am2>bm2③在ABC中,若sinA=sinB,則AB;④在一元二次方程ax2bxc=0中,若b2-4ac<0,則方程有實數(shù)根.其中原命題、逆命題、否命題、逆否命題全都是真命題的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 E:
(I)求曲線 E的離心率及標準方程;
(II)設 M(x0 , y0)是曲線 E上的任意一點,過原點作⊙M:(x﹣x02+(y﹣y02=8的兩條切線,分別交曲線 E于點 P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣ ;
②試問OP2+OQ2是否為定值.若是求出這個定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)證明:;

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線在點處的切線方程為

(1)求的值;

(2)若,求函數(shù)的單調(diào)區(qū)間;

(3)設函數(shù),且在區(qū)間內(nèi)為減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調(diào)查,如下表:(平均每天鍛煉的時間單位:分鐘)

將學生日均課外體育運動時間在上的學生評價為課外體育達標”.

平均每天鍛煉的時間(分鐘)

總?cè)藬?shù)

20

36

44

50

40

10

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過的前提下認為課外體育達標與性別有關?

課外體育不達標

課外體育達標

合計

20

110

合計

(2)從上述200名學生中,按課外體育達標”、“課外體育不達標分層抽樣,抽取4人得到一個樣本,再從這個樣本中抽取2人,求恰好抽到一名課外體育不達標學生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(e=2.71828…),g(x)為其反函數(shù).
(1)求函數(shù)F(x)=g(x)﹣ax的單調(diào)區(qū)間;
(2)設直線l與f(x),g(x)均相切,切點分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

同步練習冊答案