精英家教網 > 高中數學 > 題目詳情

【題目】王老師在做折紙游戲,現有一張邊長為1的正三角形紙片ABC,將點A翻折后恰好落在邊BC上的點F處,折痕為DE,設,

1)求x、y滿足的關系式;

2)求x的取值范圍.

【答案】1;(2

【解析】

1)連接,由翻折的特點可得垂直平分,則,在中,運用余弦定理可得,的關系式;

2)由(1)的關系式,解得關于的式子,換元后,運用基本不等式可得所求范圍,注意等號成立的條件.

解:(1)如圖連接,由點翻折后恰好落在邊上的點處,

折痕為,可得垂直平分,則,

由等邊三角形的邊長為1,且,

可得,

中,

由余弦定理可得:

,

化簡可得:,

x、y滿足的關系式為:;

2)由(1)可得,

解得:,

,由,可得:,

,

當且僅當,即,等號成立,

x的取值范圍是:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】年以來精準扶貧政策的落實,使我國扶貧工作有了新進展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數據如下表:

年份

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的個貧困發(fā)生率數據中任選兩個,求兩個都低于的概率;

(2)設年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關情況,并預測年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

(的值保留到小數點后三位)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位為了更好地應對新型冠狀病毒肺炎疫情,對單位的職工進行防疫知識培訓,所有職工選擇網絡在線培訓和線下培訓中的一種方案進行培訓.隨機抽取了140人的培訓成績,統(tǒng)計發(fā)現樣本中40個成績來自線下培訓職工,其余來自在線培訓的職工,并得到如下統(tǒng)計圖表:

線下培訓莖葉圖在線培訓直方圖

1)得分90分及以上為成績優(yōu)秀,完成下邊列聯表,并判斷是否有的把握認為成績優(yōu)秀與培訓方式有關?

優(yōu)秀

非優(yōu)秀

合計

線下培訓

在線培訓

合計

2)成績低于60分為不合格.在樣本的不合格個體中隨機再抽取3個,其中在線培訓個數是,求分布列與數學期望.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的參數方程;

(2)若,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】, ,函數, .

(Ⅰ)若有公共點,且在點處切線相同,求該切線方程;

(Ⅱ)若函數有極值但無零點,求實數的取值范圍;

(Ⅲ)當, 時,求在區(qū)間的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個頂點為,且焦距為,直線交橢圓、兩點(點、與點不重合),且滿足.

(1)求橢圓的標準方程;

(2)為坐標原點,若點滿足,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求的極值;

2)證明:時,

3)若函數有且只有三個不同的零點,分別記為,設的最大值是,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求的最小值;

2)若函數上存在極值點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且四個頂點構成的四邊形的面積是.

1)求橢圓的方程;

2)已知直線經過點,且不垂直于軸,直線與橢圓交于兩點,的中點,直線與橢圓交于兩點(是坐標原點),若四邊形的面積為,求直線的方程.

查看答案和解析>>

同步練習冊答案