【題目】設(shè)函數(shù).
(1)當(dāng)(為自然對數(shù)的底數(shù))時,求的最小值;
(2)討論函數(shù)零點的個數(shù).
【答案】(1)2;(2)見解析
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可;
(2)令g(x)=0,得到;設(shè),通過討論m的范圍,根據(jù)函數(shù)的單調(diào)性結(jié)合函數(shù)的草圖求出函數(shù)的零點個數(shù)即可.
解:(1)當(dāng)m=e時,,∴
當(dāng)x∈(0,e)時,f′(x)<0,f(x)在x∈(0,e)上是減函數(shù);
當(dāng)x∈(e,+∞)時,f′(x)>0,f(x)在x∈(e,+∞)上是增函;
∴當(dāng)x=e時,f(x)取最小值.
(2)∵函數(shù),
令g(x)=0,得;
設(shè),則′(x)=﹣x2+1=﹣(x﹣1)(x+1)
當(dāng)x∈(0,1)時,′(x)>0,(x)在x∈(0,1)上是增函數(shù);
當(dāng)x∈(1,+∞)時,′(x)<0,(x)在x∈(1,+∞)上是減函數(shù);
當(dāng)x=1是(x)的極值點,且是唯一極大值點,∴x=1是(x)的最大值點;
∴(x)的最大值為,又(0)=0結(jié)合y=(x)的圖象,
可知:①當(dāng)時,函數(shù)g(x)無零點;
②當(dāng)時,函數(shù)g(x)有且只有一個零點;
③當(dāng)時,函數(shù)g(x)有兩個零點;
④當(dāng)m≤0時,函數(shù)g(x)有且只有一個零點;
綜上:當(dāng)時,函數(shù)g(x)無零點;
當(dāng)或m≤0時,函數(shù)g(x)有且只有一個零點;
當(dāng)時,函數(shù)g(x)有且只有兩個零點;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若A∪B=A,求實數(shù)m的取值范圍;
(2)當(dāng)x∈Z時,求A的非空真子集的個數(shù);
(3)當(dāng)x∈R時,若A∩B=,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且.
(1)求的值,并確定的解析式;
(2)若且),是否存在實數(shù),使得在區(qū)間上為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為打贏打好脫貧攻堅戰(zhàn),實現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計劃建造一個室內(nèi)面積為平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長度為米,如圖所示.
(1)將兩個養(yǎng)殖池的總面積表示為的函數(shù),并寫出定義域;
(2)當(dāng)溫室的邊長取何值時,總面積最大?最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【安徽省滁州市2018屆高三上學(xué)期期末考試數(shù)學(xué)】隨著霧霾的日益嚴(yán)重,中國部分省份已經(jīng)實施了“煤改氣”的計劃來改善空氣質(zhì)量指數(shù).2017年支撐我國天然氣市場消費(fèi)增長的主要資源是國產(chǎn)常規(guī)氣和進(jìn)口天然氣,資源每年的增量不足以支撐天然氣市場連續(xù)億立方米的年增量.進(jìn)口LNG和進(jìn)口管道氣受到接收站、管道能力和進(jìn)口氣價資源的制約.未來,國產(chǎn)常規(guī)氣產(chǎn)能釋放的紅利將會逐步減弱,產(chǎn)量增量將維持在億方以內(nèi).為了測定某市是否符合實施煤改氣計劃的標(biāo)準(zhǔn),某監(jiān)測站點于2016年8月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計如下:
(1)根據(jù)上圖完成下列表格
空氣質(zhì)量指數(shù)() | |||||
天數(shù) |
(2)若按照分層抽樣的方法,從空氣質(zhì)量指數(shù)在以及的等級中抽取天進(jìn)行調(diào)研,再從這天中任取天進(jìn)行空氣顆粒物分析,記這天中空氣質(zhì)量指數(shù)在的天數(shù)為,求的分布列;
(3)以頻率估計概率,根據(jù)上述情況,若在一年天中隨機(jī)抽取天,記空氣質(zhì)量指數(shù)在以上(含)的天數(shù)為,求的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的左右焦點分別為, ,若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點 .
(1)求橢圓的方程;
(2)過點作軸的垂線,交橢圓于,求證: , , 三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的圖像在處的切線方程;
(2)證明: ;
(3)若不等式對任意的均成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com