設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列bn的前n項和.
(1)求an和Tn
(2)若對于任意的n∈N+,不等式λTn<n+8(-1)n恒成立,求實數(shù)λ的取值范圍.
考點:數(shù)列與不等式的綜合
專題:計算題,等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(1)當n≥2時,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),易證an-an-1=2(n≥2,n∈N*),于是可得:{an}是等差數(shù)列,再由等差數(shù)列的通項公式,即可得到通項,再由裂項相消求和,求得Tn
(2)分別討論n為奇數(shù)和偶數(shù),運用分離參數(shù),討論右邊的最小值,注意運用單調(diào)性和基本不等式,即可得到范圍.
解答: 解:(1)當n≥2,n∈N*時,由已知Sn=nan-n(n-1)
得Sn-1=(n-1)an-1-(n-1)(n-2).
兩式相減得Sn-Sn-1=nan-(n-1)an-1-2(n-1).
又Sn-Sn-1=an,所以(n-1)an-(n-1)an-1=2(n-1).
即an-an-1=2(n≥2,n∈N*).
所以{an}是以1為首項、2為公差的等差數(shù)列,
即an=1+2(n-1)=2n-1,
bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
).
則Tn=b1+b2+…+bn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
).
則Tn=
n
2n+1

(2)由于對任意的n∈N+,不等式λTn<n+8(-1)n恒成立,
則當n為奇數(shù)時,有λTn<n-8恒成立,
即有λ<
(n-8)(2n+1)
n
=2n-
8
n
-15,
由于2n-
8
n
-15在n≥1上遞增,則n=1取得最小值,且為-21,
則λ<-21;
當n為偶數(shù)時,有λTn<n+8恒成立,
即有λ<
(n+8)(2n+1)
n
=2n+
8
n
+17,
由于2n+
8
n
+17≥2
2n•
8
n
+17=25,當且僅當n=2,取得最小值,且為25.
則λ<25.
由于對任意的n∈N+,不等式恒成立,則λ<-21.
則實數(shù)λ的取值范圍是(-∞,-21).
點評:本題考查數(shù)列的通項和求和,著重考查運算、推理的能力,突出考查等差關(guān)系的確定與裂項法求和的綜合應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x>2},B={x|1<x<3},則(∁RA)∩B=( 。
A、{x|x>2}
B、{x|x>1}
C、{x|2<x<3}
D、{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC內(nèi)角A、B、C成等差,
①若a、b、c成等比,則△ABC等邊三角形;
②若a=2c,則△ABC銳角三角形;
③若
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,則3A=C;
④若tanA+tanC>-
3
,則△ABC為鈍角三角形.
其中正確命題的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
k
0
是矩陣A=
10
m2
的一個特征向量.
(Ⅰ)求m的值和向量
k
0
對應(yīng)的特征值;
(Ⅱ)若B=
32
21
,求矩陣B-1A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx-2交拋物線y2=8x于A、B兩點,若弦AB的中點M(2,m),則k=( 。
A、2或-1B、-1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD是等邊三角形,且平面PAD⊥底面ABCD,G為AD的中點.
(1)求證:BG⊥平面PAD;
(2)求 點G到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

商場銷售某一品牌的羊毛衫,購買人數(shù)n是羊毛衫標價x的一次函數(shù),標價越高,購買人數(shù)越少.已知標價為每件300元時,購買人數(shù)為零.標價為每件225元時,購買人數(shù)為75人,若這種羊毛衫的成本價是100元/件,商場以高于成本價的相同價格(標價)出售,問:
(1)商場要獲取最大利潤,羊毛衫的標價應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤只是一種“理想結(jié)果”,如果商場要獲得最大利潤的75%,那么羊毛衫的標價為每件多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,若在右支上存在點A,使得點F2到直線AF1的距離為2a,則該雙曲線的離心率的取值范圍是( 。
A、(1,
2
)
B、(
2
,+∞
C、(1,2)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知角A=60°,邊b=1,三角形的面積為
3
,則邊c=( 。
A、5
B、
14
C、4
D、3

查看答案和解析>>

同步練習冊答案