【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為

1)求直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程;

2)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn).

【答案】1.;(25.

【解析】

1)將t為參數(shù))中的參數(shù)t消去,即可求得直線(xiàn)l的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得曲線(xiàn)C的直角坐標(biāo)方程;

2)令,得到直線(xiàn)的參數(shù)方程為參數(shù)),代入,結(jié)合直線(xiàn)參數(shù)方程中參數(shù)的幾何意義,即可求解.

1)由題意,將t為參數(shù))中的參數(shù)t消去,可得

即直線(xiàn)l的普通方程為

,可得

又由,代入可得

所以曲線(xiàn)C的直角坐標(biāo)方程為.

2)令,則有為參數(shù)).

將其代入方程中,得,其中.

設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,,則,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,長(zhǎng)度單位相同,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)過(guò)點(diǎn)傾斜角為.

1)將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程,并寫(xiě)出直線(xiàn)的參數(shù)方程;

2)當(dāng)時(shí),直線(xiàn)交曲線(xiàn)兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校周五的課程表設(shè)計(jì)中,要求安排8節(jié)課(上午4節(jié)下午4節(jié)),分別安排語(yǔ)文數(shù)學(xué)英語(yǔ)物理化學(xué)生物政治歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學(xué)和英語(yǔ)在安排時(shí)必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有( ).

A.4800B.2400C.1200D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù).

(Ⅰ)討論函數(shù)在定義域上的單調(diào)性;

(Ⅱ)若函數(shù)的圖象在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,且對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)依次交拋物線(xiàn)及準(zhǔn)線(xiàn)于點(diǎn),若,且,則

A.2B.C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若上是減函數(shù),求實(shí)數(shù)的最大值;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美寓意美好的曲線(xiàn),曲線(xiàn)就是其中之一(如圖).給出下列三個(gè)結(jié)論:

①曲線(xiàn)恰好經(jīng)過(guò)6個(gè)整點(diǎn)(即橫縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線(xiàn)上存在到原點(diǎn)的距離超過(guò)的點(diǎn);

③曲線(xiàn)所圍成的心形區(qū)域的面積小于3

其中,所有錯(cuò)誤結(jié)論的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為

1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;

2)設(shè)直線(xiàn)軸的交點(diǎn)為,經(jīng)過(guò)點(diǎn)的動(dòng)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),證明:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的短軸長(zhǎng)為2,離心率為

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)若直線(xiàn)l與橢圓E相切于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),與圓相交于點(diǎn)A,B,且,求直線(xiàn)l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案