【題目】已知.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實(shí)數(shù)a的取值范圍.
【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為(2)
【解析】
(1)的定義域?yàn)?/span>,把代入函數(shù)解析式,求出導(dǎo)函數(shù),利用導(dǎo)函數(shù)的零點(diǎn)對定義域分段,可得原函數(shù)的單調(diào)區(qū)間;
(2),對分類討論,分為,,,,,結(jié)合求解可得使在處取得極大值的的取值范圍.
解:(1)的定義域?yàn)?/span>,
當(dāng)時(shí),,,
令,得
若,;若,
∴的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為
(2),
①當(dāng)時(shí),,令,得;
令,得.所以在處取得極大值.
②當(dāng)時(shí),,由①可知在處取得極大值
③當(dāng)時(shí),,則無極值.
④當(dāng)時(shí),令,得或;
令,得.所以在處取得極大值.
⑤當(dāng)時(shí),令,得或;
令,得所以在處取得極小值.
綜上,a的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.
(1)過作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;
(2)在(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AP與圓:內(nèi)切,且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過曲線上一點(diǎn)()作兩條直線,與曲線分別交于不同的兩點(diǎn),,若直線,的斜率分別為,,且.證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過橢圓的右焦點(diǎn),拋物線的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓于兩點(diǎn),點(diǎn)在直線上的射影依次為.
(1)求橢圓的方程;
(2)若直線交軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;
(3)當(dāng)變化時(shí),直線與是否相交于定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)同時(shí)滿足以下條件:①在上為減函數(shù),上是增函數(shù);②是偶函數(shù);③在處的切線與直線垂直.
(1)求函數(shù)的解析式;
(2)設(shè),若對,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的左、右焦點(diǎn)坐標(biāo)分別是,,離心率是,直線與橢圓C交與不同的兩點(diǎn)M,N,以線段MN為直徑作圓P,圓心為P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P與x軸相切,求圓心P的坐標(biāo);
(Ⅲ)設(shè)Q(x,y)是圓P上的動(dòng)點(diǎn),當(dāng)t變化時(shí),求y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn).
(1)若為線段上的動(dòng)點(diǎn),證明:平面平面;
(2)若為線段,,上的動(dòng)點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
①已知隨機(jī)變量服從正態(tài)分布,且,則;
②相關(guān)系數(shù)r用來衡量兩個(gè)變量之間線性關(guān)系的強(qiáng)弱,越大,相關(guān)性越弱;
③相關(guān)指數(shù)用來刻畫回歸的效果,越小,說明模型的擬合效果越好;
④在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域越狹窄,其模型擬合的精度就越高.
A.①②B.①④C.②③D.③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com