已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,=(sinA,1),=(cosA,),且

(1)求角A的大。

(2)若a=2,b=2,求△ABC的面積.

 

【答案】

(1);(II)△ABC的面積為.    

【解析】

試題分析:(1)根據(jù)向量平行的坐標(biāo)運算解答;(2)由(1)得出角A的大小,利用正弦定理計算,計算角大小,然后利用三角形中計算角,根據(jù)三角形面積公式解答即可.

試題解析:(1)  4分

(2)由正弦定理可得,,.         6分

當(dāng)時,

;           9分

當(dāng)時,

.             11分

故,△ABC的面積為.         12分

考點:平面向量的坐標(biāo)運算、正弦定理、解三角形、三角形面積公式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,且(b+a+c)(b-a-c)+2
3
absinC=0

(1)求B
(2)若b=2,△ABC的面積為
3
,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面積為
3
,證明△ABC是正三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面積為
3
,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)已知a,b,c分別為△ABC三個內(nèi)角A、B、C所對的邊長,a,b,c成等比數(shù)列.
(1)求B的取值范圍;
(2)若x=B,關(guān)于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面積S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

同步練習(xí)冊答案