【題目】已知△ABC中,角A、B、C對(duì)應(yīng)的邊分別為a、b、c,且bcosC﹣ccosBa2,tanB=3tanC,則a=_____.
【答案】2
【解析】
根據(jù)題意,由tanB=3tanC可得3,變形可得sinBcosC=3sinCcosB,結(jié)合正弦定理可得sinBcosC﹣sinCcosBsinA×a,變形可得:sinBcosC﹣sinCcosBsin(B+C)×a,由和角公式分析可得sinBcosC﹣sinCcosBa×(sinBcosC+sinCcosB),將sinBcosC=3sinCcosB代入分析可得答案.
根據(jù)題意,△ABC中,tanB=3tanC,即3,變形可得sinBcosC=3sinCcosB,
又由bcosC﹣ccosBa2,由正弦定理可得:sinBcosC﹣sinCcosBsinA×a,
變形可得:sinBcosC﹣sinCcosBsin(B+C)×a,
即sinBcosC﹣sinCcosBa×(sinBcosC+sinCcosB),
又由sinBcosC=3sinCcosB,則2sinCcosB=sinCcosB×a,
由題意可知:,即sinCcosB≠0,
變形可得:a=2;
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市房管局為了了解該市市民年月至年月期間買二手房情況,首先隨機(jī)抽樣其中名購(gòu)房者,并對(duì)其購(gòu)房面積(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖所示的頻率分布直方圖,接著調(diào)查了該市年月至年月期間當(dāng)月在售二手房均價(jià)(單位:萬(wàn)元/平方米),制成了如圖所示的散點(diǎn)圖(圖中月份代碼分別對(duì)應(yīng)年月至年月).
(1)試估計(jì)該市市民的購(gòu)房面積的中位數(shù);
(2)現(xiàn)采用分層抽樣的方法從購(gòu)房面積位于的位市民中隨機(jī)抽取人,再?gòu)倪@人中隨機(jī)抽取人,求這人的購(gòu)房面積恰好有一人在的概率;
(3)根據(jù)散點(diǎn)圖選擇和兩個(gè)模型進(jìn)行擬合,經(jīng)過(guò)數(shù)據(jù)處理得到兩個(gè)回歸方程,分別為和,并得到一些統(tǒng)計(jì)量的值如下表所示:
0.000591 | 0.000164 | |
0.006050 |
請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好,并用擬合效果更好的模型預(yù)測(cè)出年月份的二手房購(gòu)房均價(jià)(精確到)
(參考數(shù)據(jù)),,,,,,
(參考公式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程;
(2)函數(shù)在區(qū)間上有零點(diǎn),求的值;
(3)若不等式對(duì)任意正實(shí)數(shù)恒成立,求正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
⑴當(dāng)時(shí),求曲線在點(diǎn),處的切線方程;
⑵討論的單調(diào)性;
⑶當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為.
(1)求與的值;
(2)若斜率為的直線與拋物線交于、兩點(diǎn),點(diǎn)為拋物線上一點(diǎn),其橫坐標(biāo)為1,記直線的斜率為,直線的斜率為,試問(wèn):是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說(shuō)法不正確的是( )
A.,,,在同一個(gè)球面上
B.當(dāng)時(shí),三棱錐的體積為
C.與是異面直線且不垂直
D.存在一個(gè)位置,使得平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識(shí)競(jìng)賽”,先在本校進(jìn)行選拔測(cè)試,若該校有100名學(xué)生參加選拔測(cè)試,并根據(jù)選拔測(cè)試成績(jī)作出如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測(cè)試的平均成績(jī);
(2)該校推薦選拔測(cè)試成績(jī)?cè)?/span>110以上的學(xué)生代表學(xué)校參加市知識(shí)競(jìng)賽,為了了解情況,在該校推薦參加市知識(shí)競(jìng)賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的選拔成績(jī)?cè)陬l率分布直方圖中處于不同組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com