【題目】設函數(shù)).

(Ⅰ)若處取得極值,求的值;

(Ⅱ)若上為減函數(shù),求的取值范圍.

【答案】(1); (2).

【解析】

(1)對函數(shù)求導,根據(jù)極值點的定義得到f′(0)=0,即a=0,之后檢驗當a=0時,x=0是否為導函數(shù)的變號零點;(2)根由f(x)在[3,+∞)上為減函數(shù),可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立,令u(x)=,利用導數(shù)研究其最大值即可.

(I)f′(x)==,

∵f(x)在x=0處取得極值,∴f′(0)=0,解得a=0.

當a=0時,f(x)=,f′(x)=,x=0是導函數(shù)的變號零點,故滿足題意.

(II)由f(x)在[3,+∞)上為減函數(shù),∴f′(x)≤0,

可得a≥,在[3,+∞)上恒成立.

令u(x)=,u′(x)=<0,

∴u(x)在[3,+∞)上單調遞減,

∴a≥u(3)=﹣

因此a的取值范圍為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】微信運動是手機推出的多款健康運動軟件中的一款,楊老師的微信朋友圈內有位好友參與了微信運動,他隨機選取了位微信好友(女人,男人),統(tǒng)計其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

5860 8520 7326 6798 7325 8430 3216 7453 11754 9860

8753 6450 7290 4850 10223 9763 7988 9176 6421 5980

男性好友走路的步數(shù)情況可分為五個類別: )(說明:“表示大于等于,小于等于.下同), ), ), ), 步及以),三種類別人數(shù)比例為,將統(tǒng)計結果繪制如圖所示的條形圖.

若某人一天的走路步數(shù)超過步被系統(tǒng)認定為衛(wèi)健型",否則被系統(tǒng)認定為進步型”.

1)若以楊老師選取的好友當天行走步數(shù)的頻率分布來估計所有微信好友每日走路步數(shù)的概率分布,請估計楊老師的微信好友圈里參與微信運動名好友中,每天走路步數(shù)在步的人數(shù);

2)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認定認定類型性別有關?

p>

衛(wèi)健型

進步型

總計

20

20

總計

40

3)若從楊老師當天選取的步數(shù)大于10000的好友中按男女比例分層選取人進行身體狀況調查,然后再從這位好友中選取人進行訪談,求至少有一位女性好友的概率.

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,梯形中,,,,,中點.沿翻折到的位置, 使如圖2.

(1)求證:平面 平面;

(2)求與平面所成角的正弦值;

(3)設分別為的中點,試比較三棱錐和三棱錐(圖中未畫出)的體積大小,并說明理由.

圖1 圖2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(Ⅰ)若有極小值且極小值為0,求的值;

(Ⅱ)當時, , 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線,的參數(shù)方程化為普通方程;

(Ⅱ)求曲線上的點到曲線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

P是曲線C1:(x-2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸

建立極坐標系,將點P繞極點O逆時針90得到點Q,設點Q的軌跡為曲線C2.

求曲線C1,C2的極坐標方程;

射線= (>0)與曲線C1,C2分別交于A,B兩點,定點M(2,0),MAB的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)對任意的m,nR都有f(mn)=f(m)+f(n)-1,并且x>0時,恒有f(x)>1.

(1)求證:f(x)R上是增函數(shù);

(2)f(3)=4,解不等式f(a2a-5)<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積是 ,表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對名小學六年級學生進行了問卷調查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.

常喝

不常喝

合計

肥胖

2

不肥胖

18

合計

30

已知在全部人中隨機抽取人,抽到肥胖的學生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為肥胖與常喝碳酸飲料有關?請說明你的理由;

(3)已知常喝碳酸飲料且肥胖的學生中恰有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學生中隨機抽取2人參加一個有關健康飲食的電視節(jié)目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

同步練習冊答案