【題目】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點.
(Ⅰ)求點的軌跡方程;
(Ⅱ)若直線與點的軌跡有兩個不同的交點和,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ)
【解析】
試題分析:(Ⅰ)求動點軌跡方程,由題意動點E滿足,軌跡是橢圓,由橢圓標準方程可得結(jié)論;(Ⅱ)原點總在以為直徑的圓的內(nèi)部,即∠POQ大于90°,反應(yīng)在數(shù)量上就是,
因此設(shè)設(shè),,把直線與橢圓的方程聯(lián)立消去y得x的一元二次方程,從而得,,計算,用,代入后得的不等式,從而可求得的范圍.
試題解析:(Ⅰ)由題意知:,
的軌跡是以、為焦點的橢圓,其軌跡方程為
(Ⅱ)設(shè),,則將直線與橢圓的方程聯(lián)立得:,消去,得:,,………①
,
原點總在以為直徑的圓的內(nèi)部即
而
即,且滿足①式的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(),焦點到準線的距離為,過點作直線交拋物線于點(點在第一象限).
(Ⅰ)若點焦點重合,且弦長,求直線的方程;
(Ⅱ)若點關(guān)于軸的對稱點為,直線交x軸于點,且,求證:點B的坐標是,并求點到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點在線段上運動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當時,求曲線在點處的切線的斜率;
(2)當時,求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知過點的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為坐標原點,其離心率為,橢圓的一個焦點和拋物線的焦點重合.
(1)求橢圓的方程
(2)過點的動直線交橢圓于、兩點,試問:在平面上是否存在一個定點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點,若存在,說出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|ax-x2|+2b(a,b∈R).
(1)當b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數(shù)a的取值范圍;
(2)已知a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com