【題目】如圖1,在梯形中,,,,過,分別作的垂線,垂足分別為,,已知,,將梯形沿,同側(cè)折起,使得平面平面,平面平面,得到圖2.
(1)證明:平面;
(2)求三棱錐的體積.
【答案】(1)見證明;(2)
【解析】
(1)設(shè),取中點(diǎn),連接,證得,且,得到四邊形為平行四邊形,得出,利用線面平行的判定定理,即可證得平面.
(2)證得,得到點(diǎn)到平面的距離等于點(diǎn)到平面的距離,再利用錐體的體積公式,即可求解.
(1)設(shè),取中點(diǎn),連接,
∵四邊形為正方形,∴為中點(diǎn),
∵為中點(diǎn),∴且,
因?yàn)槠矫?/span>平面,平面平面,,
平面,所以平面,
又∵平面平面,∴平面平面,同理,平面,
又∵,,∴,
∴,且,∴四邊形為平行四邊形,∴,
∵平面,平面,∴平面.
(2)因?yàn)?/span>,平面,平面,所以
∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離.
∴三棱錐的體積公式,可得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+2φ)為偶函數(shù),其中φ∈(0,),則下列關(guān)于函數(shù)g(x)=sin(2x+φ)的描述正確的是( )
A.g(x)在區(qū)間[]上的最小值為﹣1
B.g(x)的圖象可由函數(shù)f(x)的圖象向上平移一個單位,再向右平移個單位長度得到
C.g(x)的圖象的一個對稱中心為(,0)
D.g(x)的一個單調(diào)遞增區(qū)間為[0,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年9月15中秋節(jié)(農(nóng)歷八月十五)到來之際,某月餅銷售企業(yè)進(jìn)行了一項(xiàng)網(wǎng)上調(diào)查,得到如下數(shù)據(jù):
男 | 女 | 合計(jì) | |
喜歡吃月餅人數(shù)(單位:萬人) | 50 | 40 | 90 |
不喜歡吃月餅人數(shù)(單位:萬人) | 30 | 20 | 50 |
合計(jì) | 80 | 60 | 140 |
為了進(jìn)一步了解中秋節(jié)期間月餅的消費(fèi)量,對參與調(diào)查的喜歡吃月餅的網(wǎng)友中秋節(jié)期間消費(fèi)月餅的數(shù)量進(jìn)行了抽樣調(diào)查,得到如下數(shù)據(jù):
已知該月餅廠所在銷售范圍內(nèi)有30萬人,并且該廠每年的銷售份額約占市場總量的35%.
(1)試根據(jù)所給數(shù)據(jù)分析,能否有以上的把握認(rèn)為,喜歡吃月餅與性別有關(guān)?
參考公式與臨界值表:,
其中:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(2)若忽略不喜歡月餅者的消費(fèi)量,請根據(jù)上述數(shù)據(jù)估計(jì):該月餅廠恰好生產(chǎn)多少噸月餅恰好能滿足市場需求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:其中所有假命題的序號是_______.
①命題“,”的否定是“,;
②將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像;
③冪函數(shù)在上是減函數(shù),則實(shí)數(shù);
④函數(shù)有兩個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖象為C,下面結(jié)論正確的是( )
A.函數(shù)f(x)的最小正周期是2π.
B.函數(shù)f(x)在區(qū)間上是遞增的
C.圖象C關(guān)于點(diǎn)對稱
D.圖象C由函數(shù)g(x)=sin2x的圖象向左平移個單位得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)到定點(diǎn)和到直線的距離之比為,設(shè)動點(diǎn)的軌跡為曲線,過點(diǎn)作垂直于軸的直線與曲線相交于兩點(diǎn),直線與曲線交于兩點(diǎn),與相交于一點(diǎn)(交點(diǎn)位于線段上,且與不重合).
(1)求曲線的方程;
(2)當(dāng)直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應(yīng)的直線的方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】因客流量臨時增大,某鞋店擬用一個高為50(即)的平面鏡自制一個豎直擺放的簡易鞋鏡,根據(jù)經(jīng)驗(yàn):一般顧客的眼睛到地面的距離為()在區(qū)間內(nèi),設(shè)支架高為(),,顧客可視的鏡像范圍為(如圖所示),記的長度為().
(I)當(dāng)時,試求關(guān)于的函數(shù)關(guān)系式和的最大值;
(II)當(dāng)顧客的鞋在鏡中的像滿足不等關(guān)系(不計(jì)鞋長)時,稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)a的取值范圍
(2)證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com