設(shè)a為實數(shù),函數(shù)f(x)=x3+ax2+(a-2)x的導(dǎo)函數(shù)是f′(x)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為(  )
A.y=-3xB.y=-2xC.y=3xD.y=2x
由f(x)=x3+ax2+(a-2)x,得,f′(x)=3x2+2ax+(a-2),
又∵f'(x)是偶函數(shù),∴2a=0,即a=0
∴f'(x)=3x2-2,
∴曲線y=f(x)在原點處的切線斜率為-2,
曲線y=f(x)在原點處的切線方程為y=-2x
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
m2
3
x3-
3
2
x2
+(m+1)x+1.
(1)若函數(shù)f(x)在x=1處取得極大值,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對任意實數(shù)m∈(0,+∞),不等式f'(x)>x2m2-(x2+1)m+x2-x+1恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3x,
(1)求函數(shù)f(x)在[-3,
3
2
]
上的最大值和最小值.
(2)求曲線y=f(x)在點P(2,f(2))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=exlnx在點(1,f(1))處的切線方程是( 。
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=2x2-3x上點(1,-1)處的切線方程為( 。
A.x-y+2=0B.x-y-2=0C.x-2y-3=0D.2x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)試用含有a的式子表示b,并求f(x)的極值;
(Ⅱ)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點M(x0,y0)(其中x0∈(x1,x2)),使得點M處的切線lAB,則稱AB存在“伴隨切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點A、B使得它存在“中值伴隨切線”,若存在,求出A、B的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=lnx-
1
x
,過函數(shù)f(x)的圖象上一點P的切線l與直線y=2x-3平行,則點P的坐標(biāo)為( 。
A.(1,-1)B.(2,ln2-
1
2
C.(3,ln3-
1
3
D.(4,ln4-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點P是曲線y=x2-lnx上一點,且在點P處的切線與直線y=x-2平行,則點P的橫坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖為函數(shù)f(x)=
x
(0<x<1)的圖象,其在點M(t,f(t))處的切線為l,l與y軸和直線y=1分別交于點P、Q,點N(0,1),若△PQN的面積為b時的點M恰好有兩個,則b的取值范圍為______.

查看答案和解析>>

同步練習(xí)冊答案