化簡(jiǎn)下列各式(其中各字母均為正數(shù)):
(1)1.5-×0+80.25×+(×)6
(2);
(3)

(1)110(2)(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù)滿足條件:①;②函數(shù)的圖像與直線相切.
(1)求函數(shù)的解析式;
(2)若不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若對(duì)任意的,總存在使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司為一家制冷設(shè)備廠設(shè)計(jì)生產(chǎn)某種型號(hào)的長(zhǎng)方形薄板,其周長(zhǎng)為4m.這種薄板須沿其對(duì)角線折疊后使用.如圖所示,ABCD(AB>AD)為長(zhǎng)方形薄板,沿AC折疊后AB′交DC于點(diǎn)P.當(dāng)△ADP的面積最大時(shí)最節(jié)能,凹多邊形ACB′PD的面積最大時(shí)制冷效果最好.
(1)設(shè)AB=xm,用x表示圖中DP的長(zhǎng)度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計(jì)薄板的長(zhǎng)和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計(jì)薄板的長(zhǎng)和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a>0,f(x)=是R上的偶函數(shù).
(1)求a的值;
(2)判斷并證明函數(shù)f(x)在[0,+∞)上的單調(diào)性;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值為8,求二次函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)和函數(shù),其中為參數(shù),且滿足.
(1)若,寫出函數(shù)的單調(diào)區(qū)間(無需證明);
(2)若方程上有唯一解,求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意,存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在C城周邊已有兩條公路l1l2在點(diǎn)O處交匯.已知OC=()km,∠AOB=75°,∠AOC=45°,現(xiàn)規(guī)劃在公路l1,l2上分別選擇AB兩處為交匯點(diǎn)(異于點(diǎn)O)直接修建一條公路通過C城.設(shè)OAx km,OBy km.

(1)求y關(guān)于x的函數(shù)關(guān)系式并指出它的定義域;
(2)試確定點(diǎn)A,B的位置,使△OAB的面積最。

查看答案和解析>>

同步練習(xí)冊(cè)答案