在△ABC中,若a2+b2-c2<0,則△ABC是


  1. A.
    鈍角三角形
  2. B.
    直角三角形
  3. C.
    銳角三角形
  4. D.
    都有可能
A
分析:利用余弦定理cosC=即可判斷.
解答:∵在△ABC中,a2+b2-c2<0,
∴cosC=<0,
<C<π.
∴△ABC是鈍角三角形.
故選A.
點評:本題考查三角形的形狀判斷,考查余弦定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a2=b2+bc+c2,則A=( 。
A、30°B、60°C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a2+b2-c2<0,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a2-b2+c2=-ac,則角B=
120°
120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a2=b2+c2+
3
bc,則A的度數(shù)為          ( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a2=b2+c2-bc,則A=
3
3

查看答案和解析>>

同步練習冊答案