【題目】已知函數(shù).
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.
【答案】(1)當(dāng)時(shí),在上是增函數(shù),在和上是減函數(shù);當(dāng)時(shí),在上是減函數(shù);當(dāng)時(shí),在上是增函數(shù),在和上是減函數(shù);(2).
【解析】
試題(1)先求出的導(dǎo)數(shù),,然后在的范圍內(nèi)討論的大小以確定和的解集;(2)時(shí),代入結(jié)合上問(wèn)可知函數(shù)在在上是減函數(shù),在上是增函數(shù),即在取最小值,若,存在,使,即存在使得.從而得出實(shí)數(shù)的取值范圍.注意不能用基本不等式,因?yàn)?/span>等號(hào)取不到,實(shí)際上為減函數(shù).所以其值域?yàn)?/span>,從而,即有.
試題解析:(1)函數(shù)的定義域?yàn)?/span>,
因?yàn)?/span>,所以,
令,可得,,2分
①當(dāng)時(shí),由可得,故此時(shí)函數(shù)在上是增函數(shù).
同樣可得在和上是減函數(shù). 4分
②當(dāng)時(shí),恒成立,故此時(shí)函數(shù)在上是減函數(shù). 6分
③當(dāng)時(shí),由可得,故此時(shí)函數(shù)在上是增函數(shù),
在和上是減函數(shù); 8分
(2)當(dāng)時(shí),由(1)可知在上是減函數(shù),在上是增函數(shù),
所以對(duì)任意的,有,
由條件存在,使,所以, 12分
即存在,使得,
即在時(shí)有解,
亦即在時(shí)有解,
由于為減函數(shù),故其值域?yàn)?/span>,
從而,即有,所以實(shí)數(shù)的取值范圍是. 16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)在拋物線(xiàn)上,,直線(xiàn)過(guò)點(diǎn),且與拋物線(xiàn)交于,兩點(diǎn).
(1)求拋物線(xiàn)的方程及點(diǎn)的坐標(biāo);
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),又恰為 的零點(diǎn).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列前項(xiàng)和為,且.
(1)證明數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解高三復(fù)習(xí)效果,從高三第一學(xué)期期中考試成績(jī)中隨機(jī)抽取50名考生的數(shù)學(xué)成績(jī),分成6組制成頻率分布直方圖如圖所示:
(1)求的值;并且計(jì)算這50名同學(xué)數(shù)學(xué)成績(jī)的樣本平均數(shù);
(2)該學(xué)校為制定下階段的復(fù)習(xí)計(jì)劃,從成績(jī)?cè)?/span>的同學(xué)中選出3位作為代表進(jìn)行座談,記成績(jī)?cè)?/span>的同學(xué)人數(shù)位,寫(xiě)出的分布列,并求出期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是正三角形,線(xiàn)段和都垂直于平面,設(shè),,且為的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求平面與平面所成的較小二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場(chǎng)比賽),第一周的比賽中,各踢了場(chǎng), 各踢了場(chǎng), 踢了場(chǎng),且隊(duì)與隊(duì)未踢過(guò), 隊(duì)與隊(duì)也未踢過(guò),則在第一周的比賽中, 隊(duì)踢的比賽的場(chǎng)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(1)若函數(shù)與函數(shù)在處有相同的切線(xiàn),求實(shí)數(shù)的值;
(2)若,且,證明: ;
(3)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com