已知雙曲線與橢圓
x2
9
+
y2
4
=1
有相同的焦點(diǎn),它的一條漸近線為y=2x,求雙曲線標(biāo)準(zhǔn)方程.
分析:先根據(jù)漸近線為y=2x設(shè)雙曲線方程為x2-
y2 
4
(λ>0),再化成雙曲線標(biāo)準(zhǔn)方程得到a,b的值,最后結(jié)合雙曲線與橢圓
x2
9
+
y2
4
=1
有相同的焦點(diǎn)得出關(guān)于λ的方程,解之可得λ,從而得到雙曲線的方程.
解答:解:設(shè)雙曲線方程為x2-
y2 
4
(λ>0),
x2
λ
-
y2
=1
(4分),
又橢圓
x2
9
+
y2
4
=1
的半焦距為
5

根據(jù)題意,得λ+4λ=5,解得λ=1,
所以雙曲線方程為x2-
y2 
4
=1
(9分)
點(diǎn)評(píng):本題主要考查圓錐曲線的基本元素之間的關(guān)系問(wèn)題,同時(shí)雙曲線、橢圓的相應(yīng)知識(shí)也進(jìn)行了綜合性考查.解答的關(guān)鍵是弄清它們的不同點(diǎn)列出方程式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-
y23
=1

(1)求此雙曲線的漸近線方程;
(2)若過(guò)點(diǎn)(2,3)的橢圓與此雙曲線有相同的焦點(diǎn),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C與橢圓x2+5y2=5有共同的焦點(diǎn),且一條漸近線方程為y=
3
x

(1)求雙曲線C的方程;
(2)設(shè)雙曲線C的焦點(diǎn)分別為F1、F2,過(guò)焦點(diǎn)F1作實(shí)軸的垂線與雙曲線C相交于A、B兩點(diǎn),求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1:x2-y2=m(m>0)與橢圓C2
x2
a2
+
y2
b2
=1
有公共焦點(diǎn)F1F2,點(diǎn)N(
2
,1)
是它們的一個(gè)公共點(diǎn).
(1)求C1,C2的方程;
(2)過(guò)點(diǎn)F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點(diǎn)A,B和C,D,求|AB|+|CD|的最大值,并求此時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

已知雙曲線與橢圓x2+4y2=64共焦點(diǎn),它的一條漸近線方程為x-=0,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)熱點(diǎn)題型4:解析幾何(解析版) 題型:解答題

已知雙曲線C1:x2-y2=m(m>0)與橢圓有公共焦點(diǎn)F1F2,點(diǎn)是它們的一個(gè)公共點(diǎn).
(1)求C1,C2的方程;
(2)過(guò)點(diǎn)F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點(diǎn)A,B和C,D,求|AB|+|CD|的最大值,并求此時(shí)直線l1的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案