化簡
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-π-α)sin(-π-α)
=
-cosα
-cosα
分析:利用誘導(dǎo)公式直接化簡表達式,求出結(jié)果即可.
解答:解:
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-π-α)sin(-π-α)

=
cosαsinαtanα
-tanαsinα

=-cosα.
故答案為:-cosα.
點評:本題考查誘導(dǎo)公式的應(yīng)用,正確利用誘導(dǎo)公式是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)化簡
sin(2π-α)•sin(π+α)•cos(-π+α)sin(3π-α)•cos(π+α)

(2)求函數(shù)y=2-sin2x+cosx的最大值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡sin(
π
2
+α)
等于(  )
A、cosαB、sinα
C、-cosαD、-sinα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)化簡
sin(2π-α)cos(π+α)
cos(α-π)cos(
π
2
-α)

(2)tanx=2,求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)化簡
sin(2π-α)cos(π+α)
cos(π-α)sin(3π-α)sin(-α-π)

(2)求值:
3
tan12°-3
sin12°(4cos212°-2)

查看答案和解析>>

同步練習冊答案