(1)過(guò)點(diǎn)P(0,0),Q(4,2),R(-1,-3)三點(diǎn)的圓的標(biāo)準(zhǔn)方程式什么?
(2)已知?jiǎng)狱c(diǎn)M到點(diǎn)A(2,0)的距離是它到點(diǎn)B(-1,0)的距離的倍,求:(1)動(dòng)點(diǎn)M的軌跡方程;(2)根據(jù)取值范圍指出軌跡表示的圖形.
(1)(2)見(jiàn)解析
【解析】(1)先求出PQ和PR的垂直平分線方程,根據(jù)圓的幾何性質(zhì)可知圓心就是這兩條垂直平分線的交點(diǎn),然后根據(jù)兩點(diǎn)間的距離公式求出半徑,即可寫出圓的標(biāo)準(zhǔn)方程.
(2)(i)設(shè)M(x,y),然后把這個(gè)條件動(dòng)點(diǎn)M到點(diǎn)A(2,0)的距離是它到點(diǎn)B(-1,0)的距離的倍坐標(biāo)化,再化簡(jiǎn)整理即可得取點(diǎn)M的軌跡方程.
(ii)再根據(jù)a的取值范圍根據(jù)方程來(lái)討論軌跡形狀.
解:(1)PQ中點(diǎn)為N(2,1)
PR中點(diǎn)為M()
PQ中垂線的斜率為,PQ中垂線所在直線方程
PR中垂線的斜率為,PR中垂線所在直線方程
,圓心(4,-3),r=5圓的標(biāo)準(zhǔn)方程
(2)設(shè)點(diǎn)M的坐標(biāo)為
當(dāng)時(shí),直線
當(dāng)時(shí),
時(shí),表示圓
時(shí),表示點(diǎn)(2,0)
時(shí),不表示任何圖形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
PC |
PQ |
PC |
PQ |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.3x2+y2=1(x>0,y>0) B.3x2y2=1(x>0,y>0)
C.x2-3y2=1(x>0,y>0) D.x2+3y2=1(x>0,y>0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.3條 B.4條 C.1條 D.2條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三上學(xué)期第十四次測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知圓C:.
(1)直線過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若,求直線的方程;
(2)過(guò)圓C上一動(dòng)點(diǎn)M作平行于y軸的直線m,設(shè)直線m與x軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)的軌跡方程;
(3) 若點(diǎn)R(1,0),在(2)的條件下,求的最小值及相應(yīng)的點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com