已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)當a=1,b=2時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)設x1,x2是f(x)的兩個極值點,x3是f(x)的一個零點,且x3≠x1,x3≠x2.證明:存在實數(shù)x4,使得x1,x2,x3,x4按某種順序排列后構成等差數(shù)列,并求x4.
(1)y=x-2  (2),證明見解析

(1)解:當a=1,b=2時,f(x)=(x-1)2(x-2),
f′(x)= (x-1)(3x-5),
故f′(2)=1.
又f(2)=0,
所以f(x)在點(2,0)處的切線方程為y=x-2.
(2)證明:由題意得f′(x)=3(x-a)(x-),
由于a<b且a,b∈R,故a<,
所以f(x)的兩個極值點為x=a,x=.
不妨設x1=a,x2=,
因為x3≠x1,x3≠x2,
且x3是f(x)的零點,
故x3=b.
又因為-a=2(b-),
x4=(a+)=,
此時a,,,b依次成等差數(shù)列,
所以存在實數(shù)x4滿足題意,且x4=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

據(jù)統(tǒng)計某種汽車的最高車速為120千米∕時,在勻速行駛時每小時的耗油量(升)與行駛速度(千米∕時)之間有如下函數(shù)關系:。已知甲、乙兩地相距100千米。
(1)若汽車以40千米∕時的速度勻速行駛,則從甲地到乙地需耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

圓心在曲線上,且與直線相切的面積最小的圓的方程是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點處的切線方程為               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發(fā)建設,陰影部分為一公共設施建設不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,交曲線于點P,設P(t,f(t)).
 
(1)將△OMN(O為坐標原點)的面積S表示成t的函數(shù)S(t);
(2)若在t=處,S(t)取得最小值,求此時a的值及S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)設函數(shù)G(x)=若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)yf(x)圖象在M(1,f(1))處的切線方程為yx+2,則f(1)+f′(1)
=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)處的導數(shù)為1,則 =
A.3B.C.D.

查看答案和解析>>

同步練習冊答案