精英家教網 > 高中數學 > 題目詳情
仔細閱讀下面問題的解法:
設A=[0,1],若不等式21-x-a>0在A上有解,求實數a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
∴a<2即為所求.
學習以上問題的解法,解決下面的問題:
(1)已知函數f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數a的取值范圍.
分析:(1)先根據函數的單調性得到反函數的定義域;再求出x=-1-
y-2
即可得到函數f(x)的反函數;
(2)直接對其分離常數即可得到其單調性;
(3)先根據條件把問題轉化為不等式a<
10-x
10+x
-2x+5在集合A上有解;再根據函數的單調性求出h(x)=
10-x
10+x
-2x+5在集合A上的最大值,即可得到結論.
解答:解:(1)f(x)=(x+1)2+2
∵f(x)在[-2,-1]上單調遞減
∴f(x)∈[2,3]
故反函數的定義域A=[2,3](2分)
令x+1=-
y-2
,x=-1-
y-2

∴f-1(x)=-1-
x-2
  x∈[2,3](4分)
(2)g(x)=
10-x
10+x
=-1+
20
10+x
  x∈[2,3]
g(x)在x∈[2,3]上單調遞減           (8分)
(3)由A∩B≠Φ,⇒不等式
10-x
10+x
>2x+a-5在集合A上有解,
亦即不等式a<
10-x
10+x
-2x+5在集合A上有解,(10分)
令函數h(x)=
10-x
10+x
-2x+5,
a<h(x)在集合A上有解,⇒a<h(x)在集合A上的最大值
又h(x)=-1+
20
10+x
-2x+5=
20
10+x
-2x+4 在區(qū)間A上單調遞減
h(x)max=g(2)=
5
3
⇒a<
5
3

⇒實數a的取值范圍為(-∞,
5
3
)                               (12分)
點評:本題主要考查函數的單調性的應用以及反函數的求法.是對函數知識的綜合考查,屬于中檔題目,考查計算能力以及分析問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:閱讀理解

仔細閱讀下面問題的解法:
設A=[0,1],若不等式21-x+a>0在A上有解,求實數a的取值范圍.
解:令f(x)=21-x+a,因為f(x)>0在A上有解.
⇒f(x)在A上的最大值大于0,
又∵f(x)在[0,1]上單調遞減
⇒f(x)最大值=f(0)

=2+a>0⇒a>-2
學習以上問題的解法,解決下面的問題,已知:函數f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函數f-1(x)及反函數的定義域A;
②設B={x|lg
10-x
10+x
>lg(2x+a-5)}
,若A∩B≠∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

仔細閱讀下面問題的解法:

    設A=[0, 1],若不等式21-x-a>0在A上有解,求實數a的取值范圍。

    解:由已知可得  a 21-x

        令f(x)= 21-x ,∵不等式a <21-x在A上有解,

        ∴a <f(x)在A上的最大值.

        又f(x)在[0,1]上單調遞減,f(x)max =f(0)=2.  ∴實數a的取值范圍為a<2.

研究學習以上問題的解法,請解決下面的問題:

(1)已知函數f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數及反函數的定義域A;

(2)對于(1)中的A,設g(x)=,x∈A,試判斷g(x)的單調性(寫明理由,不必證明);

(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數a的取值范圍。

查看答案和解析>>

科目:高中數學 來源:2014屆江西省南昌市高三上學期第一次月考理科數學試卷(解析版) 題型:解答題

仔細閱讀下面問題的解法:

設A=[0,1],若不等式21x+a>0在A上有解,求實數a的取值范圍.

解:令f(x)=21x+a,因為f(x)>0在A上有解。

=2+a>0a>-2

學習以上問題的解法,解決下面的問題,已知:函數f(x)=x2+2x+3(-2≤x≤-1).

①求f(x)的反函數f-1(x)及反函數的定義域A;

②設B=,若A∩B≠,求實數a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

仔細閱讀下面問題的解法:設A=[0,1],若不等式21-x+a>0在A上有解,求實數a的取值范圍.

解;令f(x)=21-x+a,∵f(x)>0在A上有解,∴f(x)在A上的最大值大于0.又∵f(x)在[0,1]上單調遞減,

∴f(x)max=f(0)=2+a>0,∴a>-2.

學習以上問題的解法,解決下面的問題:已知函數f(x)=x2+2x+3(-2≤x≤-1).

(1)求f(x)的反函數f-1(x)及反函數的定義域A;

(2)設B={x|lg>lg(2x+a-5)},若A∩B≠,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案