(2010·北京理,15)已知函數(shù)f(x)=2cos2x+sin2x-4cosx.

(1)求f()的值;

(2)求f(x)的最大值和最小值.

 

【答案】

(1)-.(2)當(dāng)cosx=-1時(shí),f(x)取最大值6;當(dāng)cosx時(shí),f(x)取最小值-.

【解析】本題考查了三角函數(shù)的化簡求值及二次函數(shù)在區(qū)間上的最值.(1)可直接求解,(2)化簡后轉(zhuǎn)化為關(guān)于cosx的二次函數(shù),求值即可.

(1)f()=2cos+sin2-4cos=-1+-2=-.

(2)f(x)=2(2cos2x-1)+(1-cos2x)-4cosx

=3cos2x-4cosx-1=3(cosx)2,xR

因?yàn)閏osx∈[-1,1],所以當(dāng)cosx=-1時(shí),f(x)取最大值6;當(dāng)cosx時(shí),f(x)取最小值-.

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010北京理數(shù))(19)(本小題共14分)

在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;

(Ⅱ)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010北京理數(shù))(6)a、b為非零向量!”是“函數(shù)為一次函數(shù)”的

(A)充分而不必要條件                     (B)必要不充分條件

(C)充分必要條件                         (D)既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010北京理數(shù))(1) 集合,則=

   (A) {1,2}    (B) {0,1,2}    (C){x|0≤x<3}      (D) {x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010北京理數(shù))(13)已知雙曲線的離心率為2,焦點(diǎn)與橢圓的焦點(diǎn)相同,那么雙曲線的焦點(diǎn)坐標(biāo)為        ;漸近線方程為          。

查看答案和解析>>

同步練習(xí)冊(cè)答案