如圖,在直三棱柱中,,.
(Ⅰ)求證:平面;
(Ⅱ)若為的中點,求與平面所成的角.
(1)證明過程詳見解析;(2)所成的角為.
解析試題分析:本題主要考查空間線、面位置關(guān)系,線面所成的角等基礎(chǔ)知識,同時考查空間想象能力和推理論證能力.第一問,先利用正方形得對角線互相垂直,再利用線面垂直得到線線垂直,再利用線面垂直的判定定理得到線面垂直平面;第二問,先由已知條件判斷是正三角形,由第一問的結(jié)論可知,是與平面所成的角,在直角中,得出,所以,即與平面所成的角為.
試題解析:(Ⅰ) 由題意知四邊形是正方形,故.
由平面,得.
又,所以平面,故.
從而得平面. 7分
(Ⅱ)設(shè)與相交于點,則點是線段的中點.
連接,由題意知是正三角形.
由,是的中線知:與的交點為重心,連接.
由(Ⅰ)知平面,故是在平面上的射影,于是是與平面所成的角.
在直角中,, ,
所以.
故,即與平面所成的角為. 15分
考點:1.線面垂直的判定定理;2.線面垂直的性質(zhì);3.中線的性質(zhì);4.直角三角形中求正弦.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱(側(cè)棱和底面垂直的棱柱)中,平面側(cè)面,,,且滿足.
(1)求證:;
(2)求點的距離;
(3)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)如圖,在四面體A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點.
(1)證明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
正方體的棱長為,線段上有兩個動點,且,則下列結(jié)論中錯誤的是( )
A. |
B.三棱錐的體積為定值 |
C.二面角的大小為定值 |
D.異面直線所成角為定值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐E—ABCD中,底面ABCD為邊長為5的正方形,AE平面CDE,AE=3.
(1)若為的中點,求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.
(I)求證:CD⊥平面PAC;
(II)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置,并證明,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com