精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,某幾何體的三視圖都是直角三角形,則該幾何體的體積等于__________

【答案】10

【解析】幾何體為三棱錐,(高為4底面為直角三角形),體積為

點睛:空間幾何體體積問題的常見類型及解題策略

(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.

(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉換法、分割法、補形法等方法進行求解.

(3)若以三視圖的形式給出幾何體,則應先根據三視圖得到幾何體的直觀圖,然后根據條件求解.

型】填空
束】
15

【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側棱長,則三棱錐的外接球的表面積等于__________

【答案】

【解析】三棱錐的外接球的球心在SM上(M為AB 中點),球半徑設為R,則

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我們知道: ,已知數列 , 則數列的通項公式__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動點到定點的距離和它到直線的距離的比值為常數,記動點的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相交于不同的兩點 ,直線與曲線相交于不同的兩點 ,且,求以, , , 為頂點的凸四邊形的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點

(1)求證:EF⊥CD;
(2)在平面PAD內求一點G,使GF⊥平面PCB,并證明你的結論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線與曲線有且只有一個交點,則b的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數fx)的圖象如圖所示,曲線BCD為拋物線的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函數f(x)的最小值和最小正周期;
(2)設△ABC的內角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,若 =(1,sinA)與 =(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數=lnx+ax2+(2a+1)x

(1)討論的單調性;

(2)當a﹤0時,證明

查看答案和解析>>

同步練習冊答案