(本小題滿分分)
(Ⅰ)若是公差不為零的等差數(shù)列的前n項(xiàng)和,且成等比數(shù)列,求數(shù)列的公比;
(II)設(shè)是公比不相等的兩個(gè)等比數(shù)列,,證明數(shù)列不是等比數(shù)列。
(Ⅰ)
(II)證明略
解:(Ⅰ)設(shè)數(shù)列的公差為d,由題意,得
    
故公比                       ……………7分                                                
(II)設(shè)的公比分別是p、q(p≠q), 
為證不是等比數(shù)列只需證。          ………10分
事實(shí)上,,
由于p≠q,,又不為零,
因此,故不是等比數(shù)列!14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
數(shù)列
(Ⅰ)求并求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)如果有窮數(shù)列為正整數(shù))滿足條件,,…,,即),我們稱其為“對(duì)稱數(shù)列”.
例如,數(shù)列與數(shù)列都是“對(duì)稱數(shù)列”.
(1)設(shè)是7項(xiàng)的“對(duì)稱數(shù)列”,其中是等差數(shù)列,且,.依次寫(xiě)出的每一項(xiàng);
(2)設(shè)項(xiàng)的“對(duì)稱數(shù)列”,其中是首項(xiàng)為,公比為的等比數(shù)列,求各項(xiàng)的和
(3)設(shè)項(xiàng)的“對(duì)稱數(shù)列”,其中是首項(xiàng)為,公差為的等差數(shù)列.求項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列中,,.()
(1)求數(shù)列,的通項(xiàng)
(2) 設(shè),求數(shù)列的前n項(xiàng)和.
(3) 設(shè),若對(duì)于一切,有恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題10分)
已知等差數(shù)列滿足,的前項(xiàng)和.
(1)求通項(xiàng)及當(dāng)為何值時(shí),有最大值,并求其最大值。
(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知等差數(shù)列滿足:,的前n項(xiàng)和為
(1)  求;
(2)  令,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列是公比為的等比數(shù)列,且成等差數(shù)列,則公比的值為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列中,=" " (   )
A.11B. 12C. 13 D. 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}的通項(xiàng)公式an=3n-50,則其前n項(xiàng)和Sn的最小值是(    )
A.-784B.-392 C.-389D.-368

查看答案和解析>>

同步練習(xí)冊(cè)答案