【題目】已知0<m<2,動(dòng)點(diǎn)M到兩定點(diǎn)F1(﹣m,0),F2(m,0)的距離之和為4,設(shè)點(diǎn)M的軌跡為曲線C,若曲線C過(guò)點(diǎn).
(1)求m的值以及曲線C的方程;
(2)過(guò)定點(diǎn)且斜率不為零的直線l與曲線C交于A,B兩點(diǎn).證明:以AB為直徑的圓過(guò)曲線C的右頂點(diǎn).
【答案】(1), ;(2)證明見(jiàn)解析.
【解析】
(1)根據(jù)橢圓的定義可知曲線C是以兩定點(diǎn)F1,F2為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為2的橢圓,再代入點(diǎn)求得橢圓中的基本量即可.
(2)設(shè)直線,再聯(lián)立橢圓的方程,得出韋達(dá)定理,代入進(jìn)行計(jì)算可得證明即可.
(1)解:設(shè)M(x,y),因?yàn)閨MF1|+|MF2|=4>2m,所以曲線C是以兩定點(diǎn)F1,F2為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為2的橢圓,所以a=2.
設(shè)橢圓C的方程為1(b>0),代入點(diǎn)得b2=1,
由c2=a2﹣b2,得c2=3,
所以,故曲線C的方程為;
(2)證明:設(shè)直線l:x=ty,A(x1,y1),B(x2,y2),
橢圓的右頂點(diǎn)為P(2,0),聯(lián)立方程組
消去x得0.
△>0,y1+y2,y1y2,
所以 ,∴,
故點(diǎn)P在以AB為直徑的圓上,即以AB為直徑的圓過(guò)曲線C的右頂點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)且與軸不重合的直線交橢圓于,兩點(diǎn),直線分別與軸交于點(diǎn),,.求證:以為直徑的圓恒過(guò)交點(diǎn),,并求出面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,討論函數(shù)的單調(diào)性;
(Ⅱ)若方程沒(méi)有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB⊥BC,∠ACB=60°,D為AC中點(diǎn),△ABD沿BD翻折過(guò)程中,直線AB與直線BC所成的最大角、最小角分別記為α1,β1,直線AD與直線BC所成最大角、最小角分別記為α2,β2,則有( )
A.α1<α2,β1≤β2B.α1<α2,β1>β2
C.α1≥α2,β1≤β2D.α1≥α2,β1>β2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司對(duì)旗下的甲、乙兩個(gè)門店在1至9月份的營(yíng)業(yè)額(單位:萬(wàn)元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.
下面關(guān)于兩個(gè)門店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )
A.甲門店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,故而營(yíng)業(yè)額的平均值約為32萬(wàn)元
B.根據(jù)甲門店的營(yíng)業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)
D.乙門店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F是橢圓的左焦點(diǎn),過(guò)點(diǎn)F且斜率為正的直線與E相交于A、B兩點(diǎn),過(guò)點(diǎn)A、B分別作直線AM和BN滿足AM⊥l,BN⊥l,且直線AM、BN分別與x軸相交于M和N.試求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述中錯(cuò)誤的是( )
A.消耗1升汽油乙車最多可行駛5千米.
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多.
C.甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油.
D.某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比用乙車更省油.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱臺(tái)的下底面是邊長(zhǎng)為2的正三角形,上地面是邊長(zhǎng)為1的正三角形.在下底面的射影為的重心,且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),且線段AB的長(zhǎng)度為2.
1求橢圓C的方程;
2求面積S的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com