已知函數(shù).
(1)當(dāng)時,求的最小值;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

(1) 3.(2) .(3) .

解析試題分析:(1) 當(dāng)時,   
當(dāng)時 函數(shù)取最小值3.
(2)  設(shè)
依題意  得 .
(3) 當(dāng)恒成立
 當(dāng) 恒成立
設(shè) 則


(1)當(dāng)時, 單調(diào)遞增,
(2)當(dāng)時,設(shè)
  有兩個根,一個根大于1,一個根小于1.
不妨設(shè)
當(dāng) 即 單調(diào)遞減 
不滿足已知條件.
綜上:的取值范圍為.
考點:本題考查了導(dǎo)數(shù)的運用
點評:此類問題是在知識的交匯點處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識融合在一起進(jìn)行考查,重點考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在R上的函數(shù)f(x)是最小正周期為2的奇函數(shù), 且當(dāng)x∈(0, 1)時, f (x)=.
(1)求f (x)在[-1, 1]上的解析式;  
(2)證明f (x)在(—1, 0)上時減函數(shù);
(3)當(dāng)λ取何值時, 不等式f (x)>λ在R上有解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正比例函數(shù)y=2x的圖像l1與反比例函數(shù)y=的圖像相交于點A(a,2),將直線l1向上平移3個單位得到的直線l2與雙曲線相交于B、C兩點(點B在第一象限),與y軸交于點D

(1)求反比例函數(shù)的解析式;
(2)求△DOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)有最 大值,求實數(shù)的值
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是函數(shù)的一個極值點。
(1)求的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),若存在,使得成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)無零點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有且僅有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實數(shù)的高考資源網(wǎng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 已知為實數(shù),,
(1)若,求的單調(diào)區(qū)間;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

同步練習(xí)冊答案