設(shè)有關(guān)于x的一元二次方程x2+2ax+b2="0." (l)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求方程有實(shí)根的概率;(2)若a是從區(qū)間[0,t+1]任取的一個(gè)數(shù),b是從區(qū)間[0,t]任取的一個(gè)數(shù),其中t滿足2≤t≤3,求方程有實(shí)根的概率,并求出其概率的最大值.

(1);(2).

解析試題分析:(1)本小題為古典概型求概率的問(wèn)題,先求出a與b構(gòu)成的實(shí)數(shù)對(duì)(a,b)總個(gè)數(shù)即基本事件的總數(shù),再一一進(jìn)行檢驗(yàn)符合的實(shí)數(shù)對(duì)即可求出其概率;(2)本小題為幾何概型求概率的問(wèn)題,由0≤a≤t+1,0≤b≤t利用線性規(guī)劃的知識(shí)(a看直角坐標(biāo)系中的x,b看成直角坐標(biāo)系中的y)可畫(huà)出如下圖的矩形,又a≥b(即為y≤x區(qū)域)則符合條件的陰影部分區(qū)域?yàn)樘菪,因此所求的概率?img src="http://thumb.zyjl.cn/pic5/tikupic/e5/e/1e0qt3.png" style="vertical-align:middle;" />,其次根據(jù)t的范圍利用不等式的性質(zhì)求出P的范圍即可找到其最大值.
試題解析:(1)總的基本事件有12個(gè),即a,b構(gòu)成的實(shí)數(shù)對(duì)(a,b)有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).設(shè)事件A為“方程有實(shí)根”,包含的基本事件有(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)共9個(gè),所以事件A的概率為P(A)==;
(2)a,b構(gòu)成的實(shí)數(shù)對(duì)(a,b)滿足條件有0≤a≤t+1,0≤b≤t,a≥b,設(shè)事件B為“方程有實(shí)根”,則此事件滿足幾何概型. 如圖,

,∵2≤t≤3,∴3≤t+1≤4,即,所以,即≤P(B)≤,所以其概率的最大值為.
考點(diǎn):古典概型的概率公式,幾何概型的概率公式,一元二次方程根的判別式,線性規(guī)劃問(wèn)題,不等式的性質(zhì),化歸思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某企業(yè)主要生產(chǎn)甲、乙兩種品牌的空調(diào),由于受到空調(diào)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)空調(diào)的利潤(rùn)與該空調(diào)首次出現(xiàn)故障的時(shí)間有關(guān),甲、乙兩種品牌空調(diào)的保修期均為3年,現(xiàn)從該廠已售出的兩種品牌空調(diào)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:

品牌


首次出現(xiàn)故障時(shí)間
x年







空調(diào)數(shù)量(臺(tái))
1
2
4
43
2
3
45
每臺(tái)利潤(rùn)(千元)
1
2
2.5
2.7
1.5
2.6
2.8
 
將頻率視為概率,解答下列問(wèn)題:
(1)從該廠生產(chǎn)的甲品牌空調(diào)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的空調(diào)均能售出,記生產(chǎn)一臺(tái)甲品牌空調(diào)的利潤(rùn)為X1,生產(chǎn)一臺(tái)乙品牌空調(diào)的利潤(rùn)為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計(jì)今后這兩種品牌空調(diào)銷量相當(dāng),但由于資金限制,只能生產(chǎn)其中一種品牌空調(diào),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該生產(chǎn)哪種品牌的空調(diào)?說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某縣為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全縣征召義務(wù)宣傳志愿者,先從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組第2組第3組第4組第5組得到的頻率分布直方圖如圖所示,
(1)分別求第3,4,5組的頻率。
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參與廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者.
(3)在(2)的條件下,該縣決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

名男生和名女生中任選人參加演講比賽,
①求所選人都是男生的概率;
②求所選人恰有名女生的概率;
③求所選人中至少有名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率
(1)記甲擊中目標(biāo)的次數(shù)為ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ;
(2)求甲恰好比乙多擊中目標(biāo)2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2008年5月12日,四川汶川發(fā)生8.0級(jí)特大地震,通往災(zāi)區(qū)的道路全部中斷. 5月12日晚,抗震救災(zāi)指揮部決定從水路(一支隊(duì)伍)、陸路(東南和西北兩個(gè)方向各一支隊(duì)伍)和空中(一支隊(duì)伍)同時(shí)向?yàn)?zāi)區(qū)挺進(jìn).在5月13日,仍時(shí)有較強(qiáng)余震發(fā)生,天氣狀況也不利于空中航行. 已知當(dāng)天從水路抵達(dá)災(zāi)區(qū)的概率是,從陸路每個(gè)方向抵達(dá)災(zāi)區(qū)的概率都是,從空中抵達(dá)災(zāi)區(qū)的概率是
(1)求在5月13日恰有1支隊(duì)伍抵達(dá)災(zāi)區(qū)的概率;
(2)求在5月13日抵達(dá)災(zāi)區(qū)的隊(duì)伍數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的A,B兩班中各抽5名學(xué)生進(jìn)行視力檢測(cè).檢測(cè)的數(shù)據(jù)如下:
A班5名學(xué)生的視力檢測(cè)結(jié)果:4.3,5.1,4.6,4.1,4.9.
B班5名學(xué)生的視力檢測(cè)結(jié)果:5.1,4.9,4.0,4.0,4.5.
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個(gè)班的學(xué)生視力較好?;
(2)由數(shù)據(jù)判斷哪個(gè)班的5名學(xué)生視力方差較大?(結(jié)論不要求證明)
(3)根據(jù)數(shù)據(jù)推斷A班全班40名學(xué)生中有幾名學(xué)生的視力大于4.6?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某保險(xiǎn)公司利用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:

賠付金額(元)
0
1000
2000
3000
4000
車輛數(shù)(輛)
500
130
100
150
120
(1)若每輛車的投保金額均為2800元,估計(jì)賠付金額大于投保金額的概率;
(2)在樣本車輛中,車主是新司機(jī)的占,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占,(3)估計(jì)在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在區(qū)間上隨機(jī)取一實(shí)數(shù),則該實(shí)數(shù)滿足不等式的概率為 

查看答案和解析>>

同步練習(xí)冊(cè)答案