【題目】已知橢圓的焦距為2,過右焦點(diǎn)和短軸一個端點(diǎn)的直線的斜率為為坐標(biāo)原點(diǎn).

1)求橢圓的方程;

2)設(shè)點(diǎn),直線與橢圓C交于兩個不同點(diǎn)P,Q,直線APx軸交于點(diǎn)M,直線AQx軸交于點(diǎn)N,若|OM|·|ON|=2,求證:直線l經(jīng)過定點(diǎn).

【答案】1;(2)詳見解析.

【解析】

1)由題意,根據(jù)過右焦點(diǎn)和短軸一個端點(diǎn)的直線的斜率為,求出,求出,即得橢圓的方程;

2)設(shè).把直線的方程代入橢圓的方程,韋達(dá)定理.寫出直線和直線的方程,求出.根據(jù),求出的值,即可證明直線l經(jīng)過定點(diǎn).

1)由題意,得橢圓的半焦距,右焦點(diǎn),上頂點(diǎn),所以直線的斜率,解得,由,得,所以橢圓的方程為.

2)設(shè).

聯(lián)立,

,.

直線,令,即

同理可得.

因?yàn)?/span>,所以

,解之得只有滿足題意,所以直線方程為,所以直線恒過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面平面.底面為梯形,,且,.

1)求證:;

2)求二面角的余弦值;

3)若是棱的中點(diǎn),求證:對于棱上任意一點(diǎn),都不平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為準(zhǔn)確把握市場規(guī)律,某公司對其所屬商品售價進(jìn)行市場調(diào)查和模型分析,發(fā)現(xiàn)該商品一年內(nèi)每件的售價按月近似呈的模型波動(為月份),已知3月份每件售價達(dá)到最高90元,直到7月份每件售價變?yōu)樽畹?/span>50.則根據(jù)模型可知在10月份每件售價約為_____.(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形是菱形,,,平面,,的中點(diǎn).

(1)求證:平面平面;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過的直線與拋物線相交于兩點(diǎn).

1)若點(diǎn)是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn),求面積的最小值;

2)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.

方案一:每滿100元減20元;

方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機(jī)取出3個球(逐個有放回地抽。,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)

紅球個數(shù)

3

2

1

0

實(shí)際付款

7

8

9

原價

1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;

2)若某顧客購物金額為180元,選擇哪種方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)環(huán)境,某工廠在國家的號召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:

,且每處理一噸廢棄物可得價值為萬元的某種產(chǎn)品,同時獲得國家補(bǔ)貼萬元.

1)當(dāng)時,判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤;

如果不能獲利,請求出國家最少補(bǔ)貼多少萬元,該工廠才不會虧損?

2)當(dāng)處理量為多少噸時,每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程是t為參數(shù)),以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為

1)求直線l的普通方程和圓C的直角坐標(biāo)方程;

2)由直線l上的點(diǎn)向圓C引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為抗擊新型冠狀病毒,普及防護(hù)知識,某校開展了疫情防護(hù)網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

1)求的值,并估計(jì)這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為優(yōu)秀,比賽成績低于80分為非優(yōu)秀”.請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為比賽成績是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

40

女生

50

合計(jì)

100

參考公式及數(shù)據(jù):.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案