對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù)”.在實(shí)數(shù)軸R(箭頭向右)上[x]是在點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),當(dāng)x是整數(shù)時(shí)[x]就是x.這個(gè)函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用.那么不等式[log3x]2-2[log3x]-3≤0的解集為
 
分析:由題意,可用換元法轉(zhuǎn)化為二次不等式求解,解出后再結(jié)合“取整函數(shù)”的定義求x的范圍即可.
解答:解:令[log3x]=t,則t2-2t-3≤0,解得-1≤t≤3,
所以-1≤log3x<4,所以
1
3
≤x<81

故答案為:[
1
3
,81)
點(diǎn)評(píng):本題為新定義問題,題目新穎,很好的考查對(duì)題目的理解、處理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是“不超過x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]就是x,當(dāng)x不是整數(shù),[x]是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),這個(gè)函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù),如[-2]=-2,[-1.5]=-2,[2.5]=2,則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]的值為( 。
A、28B、32C、33D、34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3,這個(gè)函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用,那么[log31]+[log32]+[log33]+…+[log3243]的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),這個(gè)函數(shù)[x]叫做“取整函數(shù)”,那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示“不超過x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]就是x,當(dāng)x不是整數(shù)時(shí),[x]是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),這個(gè)函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù);如[-2]=-2,[-1.5]=-2,[2.5]=2;則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
+[log216]的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),則[log21]+[log22]+[log23]+[log24]+[log25]=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案