已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為2,且當(dāng)x=時,f(x)的最大值為2.
(1)求f(x)的解析式.
(2)在閉區(qū)間[,]上是否存在f(x)的對稱軸?如果存在求出其對稱軸.若不存在,請說明理由.
(1) f(x)=2sin(πx+)   (2) 存在f(x)的對稱軸,其方程為x=.
(1)由T=2知=2得ω=π.
又因為當(dāng)x=時f(x)max=2知A=2.
π+φ=2kπ+(k∈Z),
故φ=2kπ+(k∈Z).
∴f(x)=2sin(πx+2kπ+)=2sin(πx+),
故f(x)=2sin(πx+).
(2)令πx+=kπ+(k∈Z),
得x=k+(k∈Z).由≤k+.
≤k≤,又k∈Z,知k=5.
故在[,]上存在f(x)的對稱軸,其方程為x=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)y=sin(ωxφ)(ω>0)的部分圖象如圖,則ω=(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)yAsin(ωxφ)(A>0,ω>0)在x時,取最大值A,在x時,取最小值-A,則當(dāng)x=π時,函數(shù)y的值(  )
A.僅與ω有關(guān) B.僅與φ有關(guān)
C.等于零 D.與φ,ω均有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知y=f(x)是奇函數(shù),且圖象關(guān)于x=3對稱,f(1)=1,cosx-sinx=,則f()=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<)的圖象經(jīng)過點(0,1),且一個最高點的坐標為(1,2),則ω的最小值是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=b(b<0)與曲線f(x)=sin(2x+)在y軸右側(cè)依次的前三個交點的橫坐標成等比數(shù)列,則b的值是   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖像如圖所示,

(1)求ω,φ的值;
(2)設(shè)g(x)=2f f-1,當(dāng)x∈[0,]時,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=Acos(ωxφ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ”的______條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=sinxcosx的最小正周期是________.

查看答案和解析>>

同步練習(xí)冊答案