【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過(guò)全國(guó)人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的共同努力,新冠肺炎疫情得到了有效控制.作為集中醫(yī)學(xué)觀察隔離點(diǎn)的某酒店在疫情期間,為客人提供兩種速食品—“方便面和“自熱米飯”.為調(diào)查這兩種速食品的受歡迎程度,酒店部門(mén)經(jīng)理記錄了連續(xù)10天這兩種速食品的銷(xiāo)售量,得到如下頻數(shù)分布表(其中銷(xiāo)售量單位:盒):

1

2

3

4

5

6

7

8

9

10

方便面

103

93

98

93

106

86

87

94

91

99

自熱米飯

88

96

98

97

101

99

102

107

104

112

1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖(填到答題卡上);

2)根據(jù)統(tǒng)計(jì)學(xué)知識(shí),你認(rèn)為哪種速食品更受歡迎,并簡(jiǎn)要說(shuō)明理由;

3)求自熱米飯銷(xiāo)售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第12天自熱米飯的銷(xiāo)售量(結(jié)果精確到整數(shù)).

參考數(shù)據(jù):.

附:回歸直線方程,其中.

【答案】1)作圖見(jiàn)解析(2)自熱米飯更受歡迎,詳見(jiàn)解析(3;預(yù)估第12天自熱米飯的銷(xiāo)售量為113個(gè)

【解析】

1)利用已知條件,直接求解莖葉圖.

2)解法一:由(1)中的莖葉圖可知,自熱米飯的銷(xiāo)售量較方便面更高,兩種速食品的銷(xiāo)售量波動(dòng)情況相當(dāng),所以認(rèn)為自熱米飯更受歡迎. 解法二:方便面的銷(xiāo)售量平均值,自熱米飯的銷(xiāo)售量平均值,推出結(jié)果.

3)求出樣本中心,回歸直線方程的斜率,然后求解截距,得到回歸直線方程,然后求解預(yù)估第12天自熱米飯的銷(xiāo)售量個(gè)數(shù).

解:(1)莖葉圖如下:

(2)解法一:由(1)中的莖葉圖可知,自熱米飯的銷(xiāo)售量較方便面更高,兩種速食品的銷(xiāo)售量波動(dòng)情況相當(dāng),所以認(rèn)為自熱米飯更受歡迎.

解法二:方便面的銷(xiāo)售量平均值為,

自熱米飯的銷(xiāo)售量平均值為,

所以自熱米飯的銷(xiāo)售量平均值比方便面銷(xiāo)售量平均值更高,因此認(rèn)為自熱米飯更受歡迎.

(3)計(jì)算,

,,

,

.

因此自熱米飯銷(xiāo)售量y關(guān)于天數(shù)t的線性回歸方程為.

當(dāng)時(shí),(個(gè)),

所以預(yù)估第12天自熱米飯的銷(xiāo)售量為113個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

)求曲線的普通方程與曲線的直角坐標(biāo)方程;

)設(shè)點(diǎn)分別是曲線,上兩動(dòng)點(diǎn)且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)的圖象與y軸交于點(diǎn),與x軸交于AB兩點(diǎn),其中,

1)求函數(shù)的解析式;

2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,,D,EF分別為線段,,的中點(diǎn).

1)證明:平面;

2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,

(Ⅰ)證明:點(diǎn)在底面上的射影必在直線上;

(Ⅱ)若二面角的大小為,,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)作圓的切線,已知,分別為切點(diǎn),直線恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和下頂點(diǎn),則直線方程為___________;橢圓的標(biāo)準(zhǔn)方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知等邊的邊長(zhǎng)為3,點(diǎn),分別是邊,上的點(diǎn),且,.如圖2,將沿折起到的位置.

1)求證:平面平面;

2)給出三個(gè)條件:①;②二面角大小為;③.在這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題的條件中,并作答:在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值為,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.注:如果多個(gè)條件分別解答,按第一個(gè)解答給分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的AB處設(shè)置觀景臺(tái),記BC=a,AC=b,AB=c(單位:百米)

1)若a,bc成等差數(shù)列,且公差為4,求b的值;

2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長(zhǎng),并求觀景路線A-C-B長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx|2x3|gx|2x+a+b|.

1)解不等式fxx2;

2)當(dāng)a0b0時(shí),若Fxfx+gx)的值域?yàn)?/span>[5,+∞),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案