設(shè)方程有解,求a的取值范圍.

 

答案:
解析:

令:

當(dāng)時(shí),是減函數(shù)

任取

    ∴ ,

從而,上是減函數(shù). 同理可證:上是增函數(shù)

∴ 當(dāng)時(shí),,當(dāng)時(shí),,求并,時(shí),  ∴

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α
=
1
1
,屬于特征值1的一個(gè)特征向量為
β
=
&-2

(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線(xiàn)的距離的最小值.
(3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

設(shè)方程有解,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

設(shè)方程有解,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

設(shè)方程有解,求a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案