已知函數(shù)f(x)=x3-3x2+2,若x∈[-2,3],則函數(shù)的值域?yàn)?div id="kjwqsw7" class="quizPutTag">[-18,2]
[-18,2]
分析:先求導(dǎo)函數(shù),從而確定函數(shù)的單調(diào)區(qū)間,確定函數(shù)的最值,從而得到函數(shù)的值域.
解答:解:求導(dǎo)函數(shù)得f(x)=3x(x-2),由f′(x)=0,得x1=0,x2=2,且函數(shù)在[-2,0],[2,3]上增,(0,2)上減,又f(-2)=-18,f(0)=2,f(2)=-2,f(3)=2,故值域?yàn)閇-18,2].
故答案為:[-18,2].
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
  • 中考一卷通系列答案
  • 指南針神州中考系列答案
  • 中考沖刺系列答案
  • 中考特訓(xùn)營(yíng)真題分類集訓(xùn)系列答案
  • 中考先鋒系列答案
  • 中考真題分類卷系列答案
  • 中考智勝考典系列答案
  • 中考總復(fù)習(xí)導(dǎo)與練系列答案
  • 中考總復(fù)習(xí)優(yōu)化方案系列答案
  • 中考最后一套卷系列答案
  • 年級(jí) 高中課程 年級(jí) 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
    π
    2
    )的部分圖象如圖所示,則f(x)的解析式是( 。
    A、f(x)=2sin(πx+
    π
    6
    )(x∈R)
    B、f(x)=2sin(2πx+
    π
    6
    )(x∈R)
    C、f(x)=2sin(πx+
    π
    3
    )(x∈R)
    D、f(x)=2sin(2πx+
    π
    3
    )(x∈R)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2012•深圳一模)已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設(shè)g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2011•上海模擬)已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
    (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

    已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
    (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

    已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設(shè)g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案